Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\left(a^{2}+c^{2}\right)}{3}-\frac{2c^{2}-2a^{2}}{3}}{2ac}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}+c^{2} times \frac{3}{3}.
\frac{\frac{3\left(a^{2}+c^{2}\right)-\left(2c^{2}-2a^{2}\right)}{3}}{2ac}
Since \frac{3\left(a^{2}+c^{2}\right)}{3} and \frac{2c^{2}-2a^{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+3c^{2}-2c^{2}+2a^{2}}{3}}{2ac}
Do the multiplications in 3\left(a^{2}+c^{2}\right)-\left(2c^{2}-2a^{2}\right).
\frac{\frac{5a^{2}+c^{2}}{3}}{2ac}
Combine like terms in 3a^{2}+3c^{2}-2c^{2}+2a^{2}.
\frac{5a^{2}+c^{2}}{3\times 2ac}
Express \frac{\frac{5a^{2}+c^{2}}{3}}{2ac} as a single fraction.
\frac{5a^{2}+c^{2}}{6ac}
Multiply 3 and 2 to get 6.
\frac{\frac{3\left(a^{2}+c^{2}\right)}{3}-\frac{2c^{2}-2a^{2}}{3}}{2ac}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}+c^{2} times \frac{3}{3}.
\frac{\frac{3\left(a^{2}+c^{2}\right)-\left(2c^{2}-2a^{2}\right)}{3}}{2ac}
Since \frac{3\left(a^{2}+c^{2}\right)}{3} and \frac{2c^{2}-2a^{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+3c^{2}-2c^{2}+2a^{2}}{3}}{2ac}
Do the multiplications in 3\left(a^{2}+c^{2}\right)-\left(2c^{2}-2a^{2}\right).
\frac{\frac{5a^{2}+c^{2}}{3}}{2ac}
Combine like terms in 3a^{2}+3c^{2}-2c^{2}+2a^{2}.
\frac{5a^{2}+c^{2}}{3\times 2ac}
Express \frac{\frac{5a^{2}+c^{2}}{3}}{2ac} as a single fraction.
\frac{5a^{2}+c^{2}}{6ac}
Multiply 3 and 2 to get 6.