Solve for b_3
b_{3}=\frac{3a\left(2a+\sqrt{14}\right)}{2}
a\neq 0
Solve for a
\left\{\begin{matrix}a=\frac{\sqrt{48b_{3}+126}-3\sqrt{14}}{12}\text{, }&b_{3}\neq 0\text{ and }b_{3}\geq -\frac{21}{8}\\a=\frac{-\sqrt{48b_{3}+126}-3\sqrt{14}}{12}\text{, }&b_{3}\geq -\frac{21}{8}\end{matrix}\right.
Share
Copied to clipboard
\frac{2}{21}a^{-1}\times 7^{\frac{1}{2}}\left(a^{2}+b_{3}-4a^{2}\right)=\sqrt{2}
Multiply both sides of the equation by 4.
\frac{2}{21}a^{-1}\times 7^{\frac{1}{2}}\left(-3a^{2}+b_{3}\right)=\sqrt{2}
Combine a^{2} and -4a^{2} to get -3a^{2}.
-\frac{2}{7}\times 7^{\frac{1}{2}}a+\frac{2}{21}a^{-1}\times 7^{\frac{1}{2}}b_{3}=\sqrt{2}
Use the distributive property to multiply \frac{2}{21}a^{-1}\times 7^{\frac{1}{2}} by -3a^{2}+b_{3}.
\frac{2}{21}a^{-1}\times 7^{\frac{1}{2}}b_{3}=\sqrt{2}+\frac{2}{7}\times 7^{\frac{1}{2}}a
Add \frac{2}{7}\times 7^{\frac{1}{2}}a to both sides.
\frac{2}{21}\sqrt{7}\times \frac{1}{a}b_{3}=\frac{2}{7}\sqrt{7}a+\sqrt{2}
Reorder the terms.
\frac{2}{21}\sqrt{7}\times 21\times 1b_{3}=\frac{2}{7}\sqrt{7}a\times 21a+21a\sqrt{2}
Multiply both sides of the equation by 21a, the least common multiple of 21,a,7.
2\sqrt{7}\times 1b_{3}=\frac{2}{7}\sqrt{7}a\times 21a+21a\sqrt{2}
Multiply \frac{2}{21} and 21 to get 2.
2\sqrt{7}b_{3}=\frac{2}{7}\sqrt{7}a\times 21a+21a\sqrt{2}
Multiply 2 and 1 to get 2.
2\sqrt{7}b_{3}=\frac{2}{7}\sqrt{7}a^{2}\times 21+21a\sqrt{2}
Multiply a and a to get a^{2}.
2\sqrt{7}b_{3}=6\sqrt{7}a^{2}+21a\sqrt{2}
Multiply \frac{2}{7} and 21 to get 6.
2\sqrt{7}b_{3}=6\sqrt{7}a^{2}+21\sqrt{2}a
The equation is in standard form.
\frac{2\sqrt{7}b_{3}}{2\sqrt{7}}=\frac{6\sqrt{7}a^{2}+21\sqrt{2}a}{2\sqrt{7}}
Divide both sides by 2\sqrt{7}.
b_{3}=\frac{6\sqrt{7}a^{2}+21\sqrt{2}a}{2\sqrt{7}}
Dividing by 2\sqrt{7} undoes the multiplication by 2\sqrt{7}.
b_{3}=\frac{3\sqrt{2}a\left(\sqrt{2}a+\sqrt{7}\right)}{2}
Divide 6\sqrt{7}a^{2}+21a\sqrt{2} by 2\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}