Evaluate
\frac{4a}{c^{2}-a^{2}}
Expand
\frac{4a}{c^{2}-a^{2}}
Share
Copied to clipboard
\frac{a\left(a+c\right)}{c\left(a+c\right)\left(a-c\right)}-\frac{a^{2}-c^{2}}{a^{2}c-2ac^{2}+c^{3}}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Factor the expressions that are not already factored in \frac{a^{2}+ac}{a^{2}c-c^{3}}.
\frac{a}{c\left(a-c\right)}-\frac{a^{2}-c^{2}}{a^{2}c-2ac^{2}+c^{3}}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Cancel out a+c in both numerator and denominator.
\frac{a}{c\left(a-c\right)}-\frac{\left(a+c\right)\left(a-c\right)}{c\left(a-c\right)^{2}}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Factor the expressions that are not already factored in \frac{a^{2}-c^{2}}{a^{2}c-2ac^{2}+c^{3}}.
\frac{a}{c\left(a-c\right)}-\frac{a+c}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Cancel out a-c in both numerator and denominator.
\frac{a-\left(a+c\right)}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Since \frac{a}{c\left(a-c\right)} and \frac{a+c}{c\left(a-c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-a-c}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Do the multiplications in a-\left(a+c\right).
\frac{-c}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Combine like terms in a-a-c.
\frac{-1}{a-c}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Cancel out c in both numerator and denominator.
\frac{-1}{a-c}+\frac{2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Factor c^{2}-a^{2}.
\frac{-\left(-1\right)\left(a+c\right)}{\left(a+c\right)\left(-a+c\right)}+\frac{2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-c and \left(a+c\right)\left(-a+c\right) is \left(a+c\right)\left(-a+c\right). Multiply \frac{-1}{a-c} times \frac{-\left(a+c\right)}{-\left(a+c\right)}.
\frac{-\left(-1\right)\left(a+c\right)+2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Since \frac{-\left(-1\right)\left(a+c\right)}{\left(a+c\right)\left(-a+c\right)} and \frac{2c}{\left(a+c\right)\left(-a+c\right)} have the same denominator, add them by adding their numerators.
\frac{a+c+2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Do the multiplications in -\left(-1\right)\left(a+c\right)+2c.
\frac{a+3c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Combine like terms in a+c+2c.
\frac{a+3c}{\left(a+c\right)\left(-a+c\right)}-\frac{3\left(-a+c\right)}{\left(a+c\right)\left(-a+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+c\right)\left(-a+c\right) and a+c is \left(a+c\right)\left(-a+c\right). Multiply \frac{3}{a+c} times \frac{-a+c}{-a+c}.
\frac{a+3c-3\left(-a+c\right)}{\left(a+c\right)\left(-a+c\right)}
Since \frac{a+3c}{\left(a+c\right)\left(-a+c\right)} and \frac{3\left(-a+c\right)}{\left(a+c\right)\left(-a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a+3c+3a-3c}{\left(a+c\right)\left(-a+c\right)}
Do the multiplications in a+3c-3\left(-a+c\right).
\frac{4a}{\left(a+c\right)\left(-a+c\right)}
Combine like terms in a+3c+3a-3c.
\frac{4a}{-a^{2}+c^{2}}
Expand \left(a+c\right)\left(-a+c\right).
\frac{a\left(a+c\right)}{c\left(a+c\right)\left(a-c\right)}-\frac{a^{2}-c^{2}}{a^{2}c-2ac^{2}+c^{3}}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Factor the expressions that are not already factored in \frac{a^{2}+ac}{a^{2}c-c^{3}}.
\frac{a}{c\left(a-c\right)}-\frac{a^{2}-c^{2}}{a^{2}c-2ac^{2}+c^{3}}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Cancel out a+c in both numerator and denominator.
\frac{a}{c\left(a-c\right)}-\frac{\left(a+c\right)\left(a-c\right)}{c\left(a-c\right)^{2}}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Factor the expressions that are not already factored in \frac{a^{2}-c^{2}}{a^{2}c-2ac^{2}+c^{3}}.
\frac{a}{c\left(a-c\right)}-\frac{a+c}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Cancel out a-c in both numerator and denominator.
\frac{a-\left(a+c\right)}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Since \frac{a}{c\left(a-c\right)} and \frac{a+c}{c\left(a-c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-a-c}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Do the multiplications in a-\left(a+c\right).
\frac{-c}{c\left(a-c\right)}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Combine like terms in a-a-c.
\frac{-1}{a-c}+\frac{2c}{c^{2}-a^{2}}-\frac{3}{a+c}
Cancel out c in both numerator and denominator.
\frac{-1}{a-c}+\frac{2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Factor c^{2}-a^{2}.
\frac{-\left(-1\right)\left(a+c\right)}{\left(a+c\right)\left(-a+c\right)}+\frac{2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-c and \left(a+c\right)\left(-a+c\right) is \left(a+c\right)\left(-a+c\right). Multiply \frac{-1}{a-c} times \frac{-\left(a+c\right)}{-\left(a+c\right)}.
\frac{-\left(-1\right)\left(a+c\right)+2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Since \frac{-\left(-1\right)\left(a+c\right)}{\left(a+c\right)\left(-a+c\right)} and \frac{2c}{\left(a+c\right)\left(-a+c\right)} have the same denominator, add them by adding their numerators.
\frac{a+c+2c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Do the multiplications in -\left(-1\right)\left(a+c\right)+2c.
\frac{a+3c}{\left(a+c\right)\left(-a+c\right)}-\frac{3}{a+c}
Combine like terms in a+c+2c.
\frac{a+3c}{\left(a+c\right)\left(-a+c\right)}-\frac{3\left(-a+c\right)}{\left(a+c\right)\left(-a+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+c\right)\left(-a+c\right) and a+c is \left(a+c\right)\left(-a+c\right). Multiply \frac{3}{a+c} times \frac{-a+c}{-a+c}.
\frac{a+3c-3\left(-a+c\right)}{\left(a+c\right)\left(-a+c\right)}
Since \frac{a+3c}{\left(a+c\right)\left(-a+c\right)} and \frac{3\left(-a+c\right)}{\left(a+c\right)\left(-a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a+3c+3a-3c}{\left(a+c\right)\left(-a+c\right)}
Do the multiplications in a+3c-3\left(-a+c\right).
\frac{4a}{\left(a+c\right)\left(-a+c\right)}
Combine like terms in a+3c+3a-3c.
\frac{4a}{-a^{2}+c^{2}}
Expand \left(a+c\right)\left(-a+c\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}