Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{2a}{a\left(a-1\right)}-\frac{a-1}{a\left(a-1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a is a\left(a-1\right). Multiply \frac{2}{a-1} times \frac{a}{a}. Multiply \frac{1}{a} times \frac{a-1}{a-1}.
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{2a-\left(a-1\right)}{a\left(a-1\right)}}
Since \frac{2a}{a\left(a-1\right)} and \frac{a-1}{a\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{2a-a+1}{a\left(a-1\right)}}
Do the multiplications in 2a-\left(a-1\right).
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{a+1}{a\left(a-1\right)}}
Combine like terms in 2a-a+1.
\frac{\left(a^{2}+a\right)a\left(a-1\right)}{\left(a^{2}-2a+1\right)\left(a+1\right)}
Divide \frac{a^{2}+a}{a^{2}-2a+1} by \frac{a+1}{a\left(a-1\right)} by multiplying \frac{a^{2}+a}{a^{2}-2a+1} by the reciprocal of \frac{a+1}{a\left(a-1\right)}.
\frac{\left(a-1\right)\left(a+1\right)a^{2}}{\left(a+1\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{a^{2}}{a-1}
Cancel out \left(a-1\right)\left(a+1\right) in both numerator and denominator.
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{2a}{a\left(a-1\right)}-\frac{a-1}{a\left(a-1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a is a\left(a-1\right). Multiply \frac{2}{a-1} times \frac{a}{a}. Multiply \frac{1}{a} times \frac{a-1}{a-1}.
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{2a-\left(a-1\right)}{a\left(a-1\right)}}
Since \frac{2a}{a\left(a-1\right)} and \frac{a-1}{a\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{2a-a+1}{a\left(a-1\right)}}
Do the multiplications in 2a-\left(a-1\right).
\frac{\frac{a^{2}+a}{a^{2}-2a+1}}{\frac{a+1}{a\left(a-1\right)}}
Combine like terms in 2a-a+1.
\frac{\left(a^{2}+a\right)a\left(a-1\right)}{\left(a^{2}-2a+1\right)\left(a+1\right)}
Divide \frac{a^{2}+a}{a^{2}-2a+1} by \frac{a+1}{a\left(a-1\right)} by multiplying \frac{a^{2}+a}{a^{2}-2a+1} by the reciprocal of \frac{a+1}{a\left(a-1\right)}.
\frac{\left(a-1\right)\left(a+1\right)a^{2}}{\left(a+1\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{a^{2}}{a-1}
Cancel out \left(a-1\right)\left(a+1\right) in both numerator and denominator.