Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}+3a\right)\left(a^{2}-2a-3\right)}{\left(a^{2}+4a+3\right)\left(a^{2}-9\right)}
Divide \frac{a^{2}+3a}{a^{2}+4a+3} by \frac{a^{2}-9}{a^{2}-2a-3} by multiplying \frac{a^{2}+3a}{a^{2}+4a+3} by the reciprocal of \frac{a^{2}-9}{a^{2}-2a-3}.
\frac{a\left(a-3\right)\left(a+1\right)\left(a+3\right)}{\left(a-3\right)\left(a+1\right)\left(a+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{a}{a+3}
Cancel out \left(a-3\right)\left(a+1\right)\left(a+3\right) in both numerator and denominator.
\frac{\left(a^{2}+3a\right)\left(a^{2}-2a-3\right)}{\left(a^{2}+4a+3\right)\left(a^{2}-9\right)}
Divide \frac{a^{2}+3a}{a^{2}+4a+3} by \frac{a^{2}-9}{a^{2}-2a-3} by multiplying \frac{a^{2}+3a}{a^{2}+4a+3} by the reciprocal of \frac{a^{2}-9}{a^{2}-2a-3}.
\frac{a\left(a-3\right)\left(a+1\right)\left(a+3\right)}{\left(a-3\right)\left(a+1\right)\left(a+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{a}{a+3}
Cancel out \left(a-3\right)\left(a+1\right)\left(a+3\right) in both numerator and denominator.