Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(a^{2}+3a+2\right)\left(a^{3}-8\right)}{\left(a^{2}+2a+4\right)\left(a+1\right)^{2}}\times \frac{a^{2}+4a+3}{a^{2}+a-2}
Divide \frac{a^{2}+3a+2}{a^{2}+2a+4} by \frac{\left(a+1\right)^{2}}{a^{3}-8} by multiplying \frac{a^{2}+3a+2}{a^{2}+2a+4} by the reciprocal of \frac{\left(a+1\right)^{2}}{a^{3}-8}.
\frac{\left(a-2\right)\left(a+1\right)\left(a+2\right)\left(a^{2}+2a+4\right)}{\left(a+1\right)^{2}\left(a^{2}+2a+4\right)}\times \frac{a^{2}+4a+3}{a^{2}+a-2}
Factor the expressions that are not already factored in \frac{\left(a^{2}+3a+2\right)\left(a^{3}-8\right)}{\left(a^{2}+2a+4\right)\left(a+1\right)^{2}}.
\frac{\left(a-2\right)\left(a+2\right)}{a+1}\times \frac{a^{2}+4a+3}{a^{2}+a-2}
Cancel out \left(a+1\right)\left(a^{2}+2a+4\right) in both numerator and denominator.
\frac{\left(a-2\right)\left(a+2\right)\left(a^{2}+4a+3\right)}{\left(a+1\right)\left(a^{2}+a-2\right)}
Multiply \frac{\left(a-2\right)\left(a+2\right)}{a+1} times \frac{a^{2}+4a+3}{a^{2}+a-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)\left(a+1\right)\left(a+2\right)\left(a+3\right)}{\left(a-1\right)\left(a+1\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{\left(a-2\right)\left(a+3\right)}{a-1}
Cancel out \left(a+1\right)\left(a+2\right) in both numerator and denominator.
\frac{a^{2}+a-6}{a-1}
Expand the expression.
\frac{\left(a^{2}+3a+2\right)\left(a^{3}-8\right)}{\left(a^{2}+2a+4\right)\left(a+1\right)^{2}}\times \frac{a^{2}+4a+3}{a^{2}+a-2}
Divide \frac{a^{2}+3a+2}{a^{2}+2a+4} by \frac{\left(a+1\right)^{2}}{a^{3}-8} by multiplying \frac{a^{2}+3a+2}{a^{2}+2a+4} by the reciprocal of \frac{\left(a+1\right)^{2}}{a^{3}-8}.
\frac{\left(a-2\right)\left(a+1\right)\left(a+2\right)\left(a^{2}+2a+4\right)}{\left(a+1\right)^{2}\left(a^{2}+2a+4\right)}\times \frac{a^{2}+4a+3}{a^{2}+a-2}
Factor the expressions that are not already factored in \frac{\left(a^{2}+3a+2\right)\left(a^{3}-8\right)}{\left(a^{2}+2a+4\right)\left(a+1\right)^{2}}.
\frac{\left(a-2\right)\left(a+2\right)}{a+1}\times \frac{a^{2}+4a+3}{a^{2}+a-2}
Cancel out \left(a+1\right)\left(a^{2}+2a+4\right) in both numerator and denominator.
\frac{\left(a-2\right)\left(a+2\right)\left(a^{2}+4a+3\right)}{\left(a+1\right)\left(a^{2}+a-2\right)}
Multiply \frac{\left(a-2\right)\left(a+2\right)}{a+1} times \frac{a^{2}+4a+3}{a^{2}+a-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)\left(a+1\right)\left(a+2\right)\left(a+3\right)}{\left(a-1\right)\left(a+1\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{\left(a-2\right)\left(a+3\right)}{a-1}
Cancel out \left(a+1\right)\left(a+2\right) in both numerator and denominator.
\frac{a^{2}+a-6}{a-1}
Expand the expression.