Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a+2b\right)}{\left(a+2b\right)^{2}}+\frac{2b}{a-2b}-\frac{4ab}{a^{2}-4b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}+2ab}{a^{2}+4ab+4b^{2}}.
\frac{a}{a+2b}+\frac{2b}{a-2b}-\frac{4ab}{a^{2}-4b^{2}}
Cancel out a+2b in both numerator and denominator.
\frac{a\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2b and a-2b is \left(a-2b\right)\left(a+2b\right). Multiply \frac{a}{a+2b} times \frac{a-2b}{a-2b}. Multiply \frac{2b}{a-2b} times \frac{a+2b}{a+2b}.
\frac{a\left(a-2b\right)+2b\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
Since \frac{a\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)} and \frac{2b\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2ab+2ba+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
Do the multiplications in a\left(a-2b\right)+2b\left(a+2b\right).
\frac{a^{2}+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
Combine like terms in a^{2}-2ab+2ba+4b^{2}.
\frac{a^{2}+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{\left(a-2b\right)\left(a+2b\right)}
Factor a^{2}-4b^{2}.
\frac{a^{2}+4b^{2}-4ab}{\left(a-2b\right)\left(a+2b\right)}
Since \frac{a^{2}+4b^{2}}{\left(a-2b\right)\left(a+2b\right)} and \frac{4ab}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a-2b\right)^{2}}{\left(a-2b\right)\left(a+2b\right)}
Factor the expressions that are not already factored in \frac{a^{2}+4b^{2}-4ab}{\left(a-2b\right)\left(a+2b\right)}.
\frac{a-2b}{a+2b}
Cancel out a-2b in both numerator and denominator.
\frac{a\left(a+2b\right)}{\left(a+2b\right)^{2}}+\frac{2b}{a-2b}-\frac{4ab}{a^{2}-4b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}+2ab}{a^{2}+4ab+4b^{2}}.
\frac{a}{a+2b}+\frac{2b}{a-2b}-\frac{4ab}{a^{2}-4b^{2}}
Cancel out a+2b in both numerator and denominator.
\frac{a\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)}+\frac{2b\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2b and a-2b is \left(a-2b\right)\left(a+2b\right). Multiply \frac{a}{a+2b} times \frac{a-2b}{a-2b}. Multiply \frac{2b}{a-2b} times \frac{a+2b}{a+2b}.
\frac{a\left(a-2b\right)+2b\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
Since \frac{a\left(a-2b\right)}{\left(a-2b\right)\left(a+2b\right)} and \frac{2b\left(a+2b\right)}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2ab+2ba+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
Do the multiplications in a\left(a-2b\right)+2b\left(a+2b\right).
\frac{a^{2}+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{a^{2}-4b^{2}}
Combine like terms in a^{2}-2ab+2ba+4b^{2}.
\frac{a^{2}+4b^{2}}{\left(a-2b\right)\left(a+2b\right)}-\frac{4ab}{\left(a-2b\right)\left(a+2b\right)}
Factor a^{2}-4b^{2}.
\frac{a^{2}+4b^{2}-4ab}{\left(a-2b\right)\left(a+2b\right)}
Since \frac{a^{2}+4b^{2}}{\left(a-2b\right)\left(a+2b\right)} and \frac{4ab}{\left(a-2b\right)\left(a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a-2b\right)^{2}}{\left(a-2b\right)\left(a+2b\right)}
Factor the expressions that are not already factored in \frac{a^{2}+4b^{2}-4ab}{\left(a-2b\right)\left(a+2b\right)}.
\frac{a-2b}{a+2b}
Cancel out a-2b in both numerator and denominator.