Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}+2a-15\right)\left(4a-12\right)}{\left(2a^{2}-50\right)\left(a^{2}-6a+9\right)}
Divide \frac{a^{2}+2a-15}{2a^{2}-50} by \frac{a^{2}-6a+9}{4a-12} by multiplying \frac{a^{2}+2a-15}{2a^{2}-50} by the reciprocal of \frac{a^{2}-6a+9}{4a-12}.
\frac{4\left(a+5\right)\left(a-3\right)^{2}}{2\left(a-5\right)\left(a+5\right)\left(a-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{a-5}
Cancel out 2\left(a+5\right)\left(a-3\right)^{2} in both numerator and denominator.
\frac{\left(a^{2}+2a-15\right)\left(4a-12\right)}{\left(2a^{2}-50\right)\left(a^{2}-6a+9\right)}
Divide \frac{a^{2}+2a-15}{2a^{2}-50} by \frac{a^{2}-6a+9}{4a-12} by multiplying \frac{a^{2}+2a-15}{2a^{2}-50} by the reciprocal of \frac{a^{2}-6a+9}{4a-12}.
\frac{4\left(a+5\right)\left(a-3\right)^{2}}{2\left(a-5\right)\left(a+5\right)\left(a-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{a-5}
Cancel out 2\left(a+5\right)\left(a-3\right)^{2} in both numerator and denominator.