Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+\frac{2}{2}a-2=2\times 4^{2}a
Multiply both sides of the equation by 4, the least common multiple of 4,2.
a^{2}+1a-2=2\times 4^{2}a
Divide 2 by 2 to get 1.
a^{2}+1a-2=2\times 16a
Calculate 4 to the power of 2 and get 16.
a^{2}+1a-2=32a
Multiply 2 and 16 to get 32.
a^{2}+1a-2-32a=0
Subtract 32a from both sides.
a^{2}-31a-2=0
Combine 1a and -32a to get -31a.
a=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -31 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-31\right)±\sqrt{961-4\left(-2\right)}}{2}
Square -31.
a=\frac{-\left(-31\right)±\sqrt{961+8}}{2}
Multiply -4 times -2.
a=\frac{-\left(-31\right)±\sqrt{969}}{2}
Add 961 to 8.
a=\frac{31±\sqrt{969}}{2}
The opposite of -31 is 31.
a=\frac{\sqrt{969}+31}{2}
Now solve the equation a=\frac{31±\sqrt{969}}{2} when ± is plus. Add 31 to \sqrt{969}.
a=\frac{31-\sqrt{969}}{2}
Now solve the equation a=\frac{31±\sqrt{969}}{2} when ± is minus. Subtract \sqrt{969} from 31.
a=\frac{\sqrt{969}+31}{2} a=\frac{31-\sqrt{969}}{2}
The equation is now solved.
a^{2}+\frac{2}{2}a-2=2\times 4^{2}a
Multiply both sides of the equation by 4, the least common multiple of 4,2.
a^{2}+1a-2=2\times 4^{2}a
Divide 2 by 2 to get 1.
a^{2}+1a-2=2\times 16a
Calculate 4 to the power of 2 and get 16.
a^{2}+1a-2=32a
Multiply 2 and 16 to get 32.
a^{2}+1a-2-32a=0
Subtract 32a from both sides.
a^{2}-31a-2=0
Combine 1a and -32a to get -31a.
a^{2}-31a=2
Add 2 to both sides. Anything plus zero gives itself.
a^{2}-31a+\left(-\frac{31}{2}\right)^{2}=2+\left(-\frac{31}{2}\right)^{2}
Divide -31, the coefficient of the x term, by 2 to get -\frac{31}{2}. Then add the square of -\frac{31}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-31a+\frac{961}{4}=2+\frac{961}{4}
Square -\frac{31}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-31a+\frac{961}{4}=\frac{969}{4}
Add 2 to \frac{961}{4}.
\left(a-\frac{31}{2}\right)^{2}=\frac{969}{4}
Factor a^{2}-31a+\frac{961}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{31}{2}\right)^{2}}=\sqrt{\frac{969}{4}}
Take the square root of both sides of the equation.
a-\frac{31}{2}=\frac{\sqrt{969}}{2} a-\frac{31}{2}=-\frac{\sqrt{969}}{2}
Simplify.
a=\frac{\sqrt{969}+31}{2} a=\frac{31-\sqrt{969}}{2}
Add \frac{31}{2} to both sides of the equation.