Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-b^{-4}a^{4}+1\right)a^{-4}}{\left(b^{-2}a^{2}+1\right)a^{-2}}
Factor the expressions that are not already factored.
\frac{-b^{-4}a^{4}+1}{\left(b^{-2}a^{2}+1\right)a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1-\left(\frac{1}{b}a\right)^{4}}{a^{2}+b^{-2}a^{4}}
Expand the expression.
\frac{1-\left(\frac{a}{b}\right)^{4}}{a^{2}+b^{-2}a^{4}}
Express \frac{1}{b}a as a single fraction.
\frac{1-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To raise \frac{a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b^{4}}{b^{4}}-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{4}}{b^{4}}.
\frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
Since \frac{b^{4}}{b^{4}} and \frac{a^{4}}{b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{4}-a^{4}}{b^{4}\left(a^{2}+b^{-2}a^{4}\right)}
Express \frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}} as a single fraction.
\frac{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}{b^{-2}a^{2}\left(a^{2}+b^{2}\right)b^{4}}
Factor the expressions that are not already factored.
\frac{\left(a+b\right)\left(-a+b\right)}{b^{-2}a^{2}b^{4}}
Cancel out a^{2}+b^{2} in both numerator and denominator.
\frac{-a^{2}+b^{2}}{\left(ab\right)^{2}}
Expand the expression.
\frac{-a^{2}+b^{2}}{a^{2}b^{2}}
Expand \left(ab\right)^{2}.
\frac{\left(-b^{-4}a^{4}+1\right)a^{-4}}{\left(b^{-2}a^{2}+1\right)a^{-2}}
Factor the expressions that are not already factored.
\frac{-b^{-4}a^{4}+1}{\left(b^{-2}a^{2}+1\right)a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1-\left(\frac{1}{b}a\right)^{4}}{a^{2}+b^{-2}a^{4}}
Expand the expression.
\frac{1-\left(\frac{a}{b}\right)^{4}}{a^{2}+b^{-2}a^{4}}
Express \frac{1}{b}a as a single fraction.
\frac{1-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To raise \frac{a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b^{4}}{b^{4}}-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{4}}{b^{4}}.
\frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
Since \frac{b^{4}}{b^{4}} and \frac{a^{4}}{b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{4}-a^{4}}{b^{4}\left(a^{2}+b^{-2}a^{4}\right)}
Express \frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}} as a single fraction.
\frac{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}{b^{-2}a^{2}\left(a^{2}+b^{2}\right)b^{4}}
Factor the expressions that are not already factored.
\frac{\left(a+b\right)\left(-a+b\right)}{b^{-2}a^{2}b^{4}}
Cancel out a^{2}+b^{2} in both numerator and denominator.
\frac{-a^{2}+b^{2}}{\left(ab\right)^{2}}
Expand the expression.
\frac{-a^{2}+b^{2}}{a^{2}b^{2}}
Expand \left(ab\right)^{2}.