Evaluate
\frac{b^{2}-a^{2}}{\left(ab\right)^{2}}
Expand
\frac{b^{2}-a^{2}}{\left(ab\right)^{2}}
Share
Copied to clipboard
\frac{\left(-b^{-4}a^{4}+1\right)a^{-4}}{\left(b^{-2}a^{2}+1\right)a^{-2}}
Factor the expressions that are not already factored.
\frac{-b^{-4}a^{4}+1}{\left(b^{-2}a^{2}+1\right)a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1-\left(\frac{1}{b}a\right)^{4}}{a^{2}+b^{-2}a^{4}}
Expand the expression.
\frac{1-\left(\frac{a}{b}\right)^{4}}{a^{2}+b^{-2}a^{4}}
Express \frac{1}{b}a as a single fraction.
\frac{1-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To raise \frac{a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b^{4}}{b^{4}}-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{4}}{b^{4}}.
\frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
Since \frac{b^{4}}{b^{4}} and \frac{a^{4}}{b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{4}-a^{4}}{b^{4}\left(a^{2}+b^{-2}a^{4}\right)}
Express \frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}} as a single fraction.
\frac{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}{b^{-2}a^{2}\left(a^{2}+b^{2}\right)b^{4}}
Factor the expressions that are not already factored.
\frac{\left(a+b\right)\left(-a+b\right)}{b^{-2}a^{2}b^{4}}
Cancel out a^{2}+b^{2} in both numerator and denominator.
\frac{-a^{2}+b^{2}}{\left(ab\right)^{2}}
Expand the expression.
\frac{-a^{2}+b^{2}}{a^{2}b^{2}}
Expand \left(ab\right)^{2}.
\frac{\left(-b^{-4}a^{4}+1\right)a^{-4}}{\left(b^{-2}a^{2}+1\right)a^{-2}}
Factor the expressions that are not already factored.
\frac{-b^{-4}a^{4}+1}{\left(b^{-2}a^{2}+1\right)a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1-\left(\frac{1}{b}a\right)^{4}}{a^{2}+b^{-2}a^{4}}
Expand the expression.
\frac{1-\left(\frac{a}{b}\right)^{4}}{a^{2}+b^{-2}a^{4}}
Express \frac{1}{b}a as a single fraction.
\frac{1-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To raise \frac{a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b^{4}}{b^{4}}-\frac{a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{4}}{b^{4}}.
\frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}}
Since \frac{b^{4}}{b^{4}} and \frac{a^{4}}{b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{4}-a^{4}}{b^{4}\left(a^{2}+b^{-2}a^{4}\right)}
Express \frac{\frac{b^{4}-a^{4}}{b^{4}}}{a^{2}+b^{-2}a^{4}} as a single fraction.
\frac{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}{b^{-2}a^{2}\left(a^{2}+b^{2}\right)b^{4}}
Factor the expressions that are not already factored.
\frac{\left(a+b\right)\left(-a+b\right)}{b^{-2}a^{2}b^{4}}
Cancel out a^{2}+b^{2} in both numerator and denominator.
\frac{-a^{2}+b^{2}}{\left(ab\right)^{2}}
Expand the expression.
\frac{-a^{2}+b^{2}}{a^{2}b^{2}}
Expand \left(ab\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}