Evaluate
\frac{b-a}{a+b}
Expand
\frac{b-a}{a+b}
Share
Copied to clipboard
\frac{\left(-\frac{1}{b}a+1\right)\times \left(\frac{1}{a}\right)^{2}}{\left(1+\frac{1}{b}a\right)\times \left(\frac{1}{a}\right)^{2}}
Factor the expressions that are not already factored.
\frac{-\frac{1}{b}a+1}{1+\frac{1}{b}a}
Cancel out \left(\frac{1}{a}\right)^{2} in both numerator and denominator.
\frac{-\frac{a}{b}+1}{1+\frac{1}{b}a}
Express \frac{1}{b}a as a single fraction.
\frac{-\frac{a}{b}+\frac{b}{b}}{1+\frac{1}{b}a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{\frac{-a+b}{b}}{1+\frac{1}{b}a}
Since -\frac{a}{b} and \frac{b}{b} have the same denominator, add them by adding their numerators.
\frac{\frac{-a+b}{b}}{1+\frac{a}{b}}
Express \frac{1}{b}a as a single fraction.
\frac{\frac{-a+b}{b}}{\frac{b}{b}+\frac{a}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{\frac{-a+b}{b}}{\frac{b+a}{b}}
Since \frac{b}{b} and \frac{a}{b} have the same denominator, add them by adding their numerators.
\frac{\left(-a+b\right)b}{b\left(b+a\right)}
Divide \frac{-a+b}{b} by \frac{b+a}{b} by multiplying \frac{-a+b}{b} by the reciprocal of \frac{b+a}{b}.
\frac{-a+b}{a+b}
Cancel out b in both numerator and denominator.
\frac{\left(-\frac{1}{b}a+1\right)\times \left(\frac{1}{a}\right)^{2}}{\left(1+\frac{1}{b}a\right)\times \left(\frac{1}{a}\right)^{2}}
Factor the expressions that are not already factored.
\frac{-\frac{1}{b}a+1}{1+\frac{1}{b}a}
Cancel out \left(\frac{1}{a}\right)^{2} in both numerator and denominator.
\frac{-\frac{a}{b}+1}{1+\frac{1}{b}a}
Express \frac{1}{b}a as a single fraction.
\frac{-\frac{a}{b}+\frac{b}{b}}{1+\frac{1}{b}a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{\frac{-a+b}{b}}{1+\frac{1}{b}a}
Since -\frac{a}{b} and \frac{b}{b} have the same denominator, add them by adding their numerators.
\frac{\frac{-a+b}{b}}{1+\frac{a}{b}}
Express \frac{1}{b}a as a single fraction.
\frac{\frac{-a+b}{b}}{\frac{b}{b}+\frac{a}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{\frac{-a+b}{b}}{\frac{b+a}{b}}
Since \frac{b}{b} and \frac{a}{b} have the same denominator, add them by adding their numerators.
\frac{\left(-a+b\right)b}{b\left(b+a\right)}
Divide \frac{-a+b}{b} by \frac{b+a}{b} by multiplying \frac{-a+b}{b} by the reciprocal of \frac{b+a}{b}.
\frac{-a+b}{a+b}
Cancel out b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}