Evaluate
\frac{2b^{2}}{b^{2}-a^{2}}
Factor
\frac{2b^{2}}{b^{2}-a^{2}}
Share
Copied to clipboard
\frac{1}{\left(1+\frac{1}{b}a\right)\times \frac{1}{a}a}+\frac{a^{-1}}{a^{-1}-b^{-1}}
Factor the expressions that are not already factored in \frac{a^{-1}}{a^{-1}+b^{-1}}.
\frac{1}{1+\frac{1}{b}a}+\frac{a^{-1}}{a^{-1}-b^{-1}}
Cancel out \frac{1}{a} in both numerator and denominator.
\frac{1}{1+\frac{a}{b}}+\frac{a^{-1}}{a^{-1}-b^{-1}}
Express \frac{1}{b}a as a single fraction.
\frac{1}{\frac{b}{b}+\frac{a}{b}}+\frac{a^{-1}}{a^{-1}-b^{-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{1}{\frac{b+a}{b}}+\frac{a^{-1}}{a^{-1}-b^{-1}}
Since \frac{b}{b} and \frac{a}{b} have the same denominator, add them by adding their numerators.
\frac{b}{b+a}+\frac{a^{-1}}{a^{-1}-b^{-1}}
Divide 1 by \frac{b+a}{b} by multiplying 1 by the reciprocal of \frac{b+a}{b}.
\frac{b}{b+a}+\frac{1}{\left(-\frac{1}{b}a+1\right)\times \frac{1}{a}a}
Factor the expressions that are not already factored in \frac{a^{-1}}{a^{-1}-b^{-1}}.
\frac{b}{b+a}+\frac{1}{-\frac{1}{b}a+1}
Cancel out \frac{1}{a} in both numerator and denominator.
\frac{b}{b+a}+\frac{1}{-\frac{a}{b}+1}
Express \frac{1}{b}a as a single fraction.
\frac{b}{b+a}+\frac{1}{-\frac{a}{b}+\frac{b}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{b}{b+a}+\frac{1}{\frac{-a+b}{b}}
Since -\frac{a}{b} and \frac{b}{b} have the same denominator, add them by adding their numerators.
\frac{b}{b+a}+\frac{b}{-a+b}
Divide 1 by \frac{-a+b}{b} by multiplying 1 by the reciprocal of \frac{-a+b}{b}.
\frac{b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+a and -a+b is \left(a+b\right)\left(-a+b\right). Multiply \frac{b}{b+a} times \frac{-a+b}{-a+b}. Multiply \frac{b}{-a+b} times \frac{a+b}{a+b}.
\frac{b\left(-a+b\right)+b\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}
Since \frac{b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} and \frac{b\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{-ba+b^{2}+ba+b^{2}}{\left(a+b\right)\left(-a+b\right)}
Do the multiplications in b\left(-a+b\right)+b\left(a+b\right).
\frac{2b^{2}}{\left(a+b\right)\left(-a+b\right)}
Combine like terms in -ba+b^{2}+ba+b^{2}.
\frac{2b^{2}}{-a^{2}+b^{2}}
Expand \left(a+b\right)\left(-a+b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}