Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{-\frac{1}{9}}a^{-\frac{2}{3}}}{-a^{2}}}{\left(-\frac{1}{a}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{3} and 2 to get -\frac{2}{3}.
\frac{\frac{a^{-\frac{7}{9}}}{-a^{2}}}{\left(-\frac{1}{a}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -\frac{1}{9} and -\frac{2}{3} to get -\frac{7}{9}.
\frac{\frac{a^{-\frac{7}{9}}}{-a^{2}}}{\left(\frac{1}{a}\right)^{2}}
Calculate -\frac{1}{a} to the power of 2 and get \left(\frac{1}{a}\right)^{2}.
\frac{\frac{a^{-\frac{7}{9}}}{-a^{2}}}{\frac{1^{2}}{a^{2}}}
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-\frac{7}{9}}a^{2}}{\left(-a^{2}\right)\times 1^{2}}
Divide \frac{a^{-\frac{7}{9}}}{-a^{2}} by \frac{1^{2}}{a^{2}} by multiplying \frac{a^{-\frac{7}{9}}}{-a^{2}} by the reciprocal of \frac{1^{2}}{a^{2}}.
\frac{a^{-\frac{7}{9}}a^{2}}{-1^{2}a^{2}}
Factor the expressions that are not already factored.
\frac{a^{-\frac{7}{9}}}{-1^{2}}
Cancel out a^{2} in both numerator and denominator.
-a^{-\frac{7}{9}}
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{-\frac{1}{9}}a^{-\frac{2}{3}}}{-a^{2}}}{\left(-\frac{1}{a}\right)^{2}})
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{3} and 2 to get -\frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{-\frac{7}{9}}}{-a^{2}}}{\left(-\frac{1}{a}\right)^{2}})
To multiply powers of the same base, add their exponents. Add -\frac{1}{9} and -\frac{2}{3} to get -\frac{7}{9}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{-\frac{7}{9}}}{-a^{2}}}{\left(\frac{1}{a}\right)^{2}})
Calculate -\frac{1}{a} to the power of 2 and get \left(\frac{1}{a}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{-\frac{7}{9}}}{-a^{2}}}{\frac{1^{2}}{a^{2}}})
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{-\frac{7}{9}}a^{2}}{\left(-a^{2}\right)\times 1^{2}})
Divide \frac{a^{-\frac{7}{9}}}{-a^{2}} by \frac{1^{2}}{a^{2}} by multiplying \frac{a^{-\frac{7}{9}}}{-a^{2}} by the reciprocal of \frac{1^{2}}{a^{2}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{-\frac{7}{9}}a^{2}}{-1^{2}a^{2}})
Factor the expressions that are not already factored in \frac{a^{-\frac{7}{9}}a^{2}}{\left(-a^{2}\right)\times 1^{2}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{-\frac{7}{9}}}{-1^{2}})
Cancel out a^{2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{-\frac{7}{9}}}{-1})
Calculate 1 to the power of 2 and get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(-a^{-\frac{7}{9}})
Anything divided by -1 gives its opposite.
-\frac{7}{9}\left(-1\right)a^{-\frac{7}{9}-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{7}{9}a^{-\frac{7}{9}-1}
Multiply -\frac{7}{9} times -1.
\frac{7}{9}a^{-\frac{16}{9}}
Subtract 1 from -\frac{7}{9}.