Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}-\frac{aa}{a\left(a-b\right)}+\frac{b^{2}}{a^{2}-ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a-b is a\left(a-b\right). Multiply \frac{a+b}{a} times \frac{a-b}{a-b}. Multiply \frac{a}{a-b} times \frac{a}{a}.
\frac{\left(a+b\right)\left(a-b\right)-aa}{a\left(a-b\right)}+\frac{b^{2}}{a^{2}-ab}
Since \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} and \frac{aa}{a\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-ab+ba-b^{2}-a^{2}}{a\left(a-b\right)}+\frac{b^{2}}{a^{2}-ab}
Do the multiplications in \left(a+b\right)\left(a-b\right)-aa.
\frac{-b^{2}}{a\left(a-b\right)}+\frac{b^{2}}{a^{2}-ab}
Combine like terms in a^{2}-ab+ba-b^{2}-a^{2}.
\frac{-b^{2}}{a\left(a-b\right)}+\frac{b^{2}}{a\left(a-b\right)}
Factor a^{2}-ab.
\frac{-b^{2}+b^{2}}{a\left(a-b\right)}
Since \frac{-b^{2}}{a\left(a-b\right)} and \frac{b^{2}}{a\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{0}{a\left(a-b\right)}
Combine like terms in -b^{2}+b^{2}.
0
Zero divided by any non-zero term gives zero.