Evaluate
\frac{a^{4}-b^{4}}{36ab^{2}}
Expand
-\frac{b^{4}-a^{4}}{36ab^{2}}
Share
Copied to clipboard
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Multiply \frac{a+b}{6} times \frac{a-b}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Multiply \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} times \frac{a^{2}+b^{2}}{3b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
Multiply 6 and 2 to get 12.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Multiply 12 and 3 to get 36.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Use the distributive property to multiply a+b by a-b and combine like terms.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Consider \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{a^{4}-b^{4}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Multiply \frac{a+b}{6} times \frac{a-b}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Multiply \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} times \frac{a^{2}+b^{2}}{3b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
Multiply 6 and 2 to get 12.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Multiply 12 and 3 to get 36.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Use the distributive property to multiply a+b by a-b and combine like terms.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Consider \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{a^{4}-b^{4}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}