Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Multiply \frac{a+b}{6} times \frac{a-b}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Multiply \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} times \frac{a^{2}+b^{2}}{3b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
Multiply 6 and 2 to get 12.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Multiply 12 and 3 to get 36.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Use the distributive property to multiply a+b by a-b and combine like terms.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Consider \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{a^{4}-b^{4}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Multiply \frac{a+b}{6} times \frac{a-b}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Multiply \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} times \frac{a^{2}+b^{2}}{3b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
Multiply 6 and 2 to get 12.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Multiply 12 and 3 to get 36.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Use the distributive property to multiply a+b by a-b and combine like terms.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Consider \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{a^{4}-b^{4}}{36ab^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.