Solve for L
L=\frac{a+b}{4}
Solve for a
a=-\left(b-4L\right)
Share
Copied to clipboard
\frac{1}{4}a+\frac{1}{4}b=L
Divide each term of a+b by 4 to get \frac{1}{4}a+\frac{1}{4}b.
L=\frac{1}{4}a+\frac{1}{4}b
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}a+\frac{1}{4}b=L
Divide each term of a+b by 4 to get \frac{1}{4}a+\frac{1}{4}b.
\frac{1}{4}a=L-\frac{1}{4}b
Subtract \frac{1}{4}b from both sides.
\frac{1}{4}a=-\frac{b}{4}+L
The equation is in standard form.
\frac{\frac{1}{4}a}{\frac{1}{4}}=\frac{-\frac{b}{4}+L}{\frac{1}{4}}
Multiply both sides by 4.
a=\frac{-\frac{b}{4}+L}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
a=4L-b
Divide L-\frac{b}{4} by \frac{1}{4} by multiplying L-\frac{b}{4} by the reciprocal of \frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}