Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4\left(a+b\right)}{12x}-\frac{3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and 4x is 12x. Multiply \frac{a+b}{3x} times \frac{4}{4}. Multiply \frac{a-b}{4x} times \frac{3}{3}.
\frac{4\left(a+b\right)-3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
Since \frac{4\left(a+b\right)}{12x} and \frac{3\left(a-b\right)}{12x} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+4b-3a+3b}{12x}+\frac{a^{2}+b^{2}}{5x}
Do the multiplications in 4\left(a+b\right)-3\left(a-b\right).
\frac{a+7b}{12x}+\frac{a^{2}+b^{2}}{5x}
Combine like terms in 4a+4b-3a+3b.
\frac{5\left(a+7b\right)}{60x}+\frac{12\left(a^{2}+b^{2}\right)}{60x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12x and 5x is 60x. Multiply \frac{a+7b}{12x} times \frac{5}{5}. Multiply \frac{a^{2}+b^{2}}{5x} times \frac{12}{12}.
\frac{5\left(a+7b\right)+12\left(a^{2}+b^{2}\right)}{60x}
Since \frac{5\left(a+7b\right)}{60x} and \frac{12\left(a^{2}+b^{2}\right)}{60x} have the same denominator, add them by adding their numerators.
\frac{5a+35b+12a^{2}+12b^{2}}{60x}
Do the multiplications in 5\left(a+7b\right)+12\left(a^{2}+b^{2}\right).
\frac{4\left(a+b\right)}{12x}-\frac{3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and 4x is 12x. Multiply \frac{a+b}{3x} times \frac{4}{4}. Multiply \frac{a-b}{4x} times \frac{3}{3}.
\frac{4\left(a+b\right)-3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
Since \frac{4\left(a+b\right)}{12x} and \frac{3\left(a-b\right)}{12x} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+4b-3a+3b}{12x}+\frac{a^{2}+b^{2}}{5x}
Do the multiplications in 4\left(a+b\right)-3\left(a-b\right).
\frac{a+7b}{12x}+\frac{a^{2}+b^{2}}{5x}
Combine like terms in 4a+4b-3a+3b.
\frac{5\left(a+7b\right)}{60x}+\frac{12\left(a^{2}+b^{2}\right)}{60x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12x and 5x is 60x. Multiply \frac{a+7b}{12x} times \frac{5}{5}. Multiply \frac{a^{2}+b^{2}}{5x} times \frac{12}{12}.
\frac{5\left(a+7b\right)+12\left(a^{2}+b^{2}\right)}{60x}
Since \frac{5\left(a+7b\right)}{60x} and \frac{12\left(a^{2}+b^{2}\right)}{60x} have the same denominator, add them by adding their numerators.
\frac{5a+35b+12a^{2}+12b^{2}}{60x}
Do the multiplications in 5\left(a+7b\right)+12\left(a^{2}+b^{2}\right).