Evaluate
\frac{12a^{2}+12b^{2}+5a+35b}{60x}
Expand
\frac{12a^{2}+12b^{2}+5a+35b}{60x}
Graph
Share
Copied to clipboard
\frac{4\left(a+b\right)}{12x}-\frac{3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and 4x is 12x. Multiply \frac{a+b}{3x} times \frac{4}{4}. Multiply \frac{a-b}{4x} times \frac{3}{3}.
\frac{4\left(a+b\right)-3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
Since \frac{4\left(a+b\right)}{12x} and \frac{3\left(a-b\right)}{12x} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+4b-3a+3b}{12x}+\frac{a^{2}+b^{2}}{5x}
Do the multiplications in 4\left(a+b\right)-3\left(a-b\right).
\frac{a+7b}{12x}+\frac{a^{2}+b^{2}}{5x}
Combine like terms in 4a+4b-3a+3b.
\frac{5\left(a+7b\right)}{60x}+\frac{12\left(a^{2}+b^{2}\right)}{60x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12x and 5x is 60x. Multiply \frac{a+7b}{12x} times \frac{5}{5}. Multiply \frac{a^{2}+b^{2}}{5x} times \frac{12}{12}.
\frac{5\left(a+7b\right)+12\left(a^{2}+b^{2}\right)}{60x}
Since \frac{5\left(a+7b\right)}{60x} and \frac{12\left(a^{2}+b^{2}\right)}{60x} have the same denominator, add them by adding their numerators.
\frac{5a+35b+12a^{2}+12b^{2}}{60x}
Do the multiplications in 5\left(a+7b\right)+12\left(a^{2}+b^{2}\right).
\frac{4\left(a+b\right)}{12x}-\frac{3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and 4x is 12x. Multiply \frac{a+b}{3x} times \frac{4}{4}. Multiply \frac{a-b}{4x} times \frac{3}{3}.
\frac{4\left(a+b\right)-3\left(a-b\right)}{12x}+\frac{a^{2}+b^{2}}{5x}
Since \frac{4\left(a+b\right)}{12x} and \frac{3\left(a-b\right)}{12x} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+4b-3a+3b}{12x}+\frac{a^{2}+b^{2}}{5x}
Do the multiplications in 4\left(a+b\right)-3\left(a-b\right).
\frac{a+7b}{12x}+\frac{a^{2}+b^{2}}{5x}
Combine like terms in 4a+4b-3a+3b.
\frac{5\left(a+7b\right)}{60x}+\frac{12\left(a^{2}+b^{2}\right)}{60x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12x and 5x is 60x. Multiply \frac{a+7b}{12x} times \frac{5}{5}. Multiply \frac{a^{2}+b^{2}}{5x} times \frac{12}{12}.
\frac{5\left(a+7b\right)+12\left(a^{2}+b^{2}\right)}{60x}
Since \frac{5\left(a+7b\right)}{60x} and \frac{12\left(a^{2}+b^{2}\right)}{60x} have the same denominator, add them by adding their numerators.
\frac{5a+35b+12a^{2}+12b^{2}}{60x}
Do the multiplications in 5\left(a+7b\right)+12\left(a^{2}+b^{2}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}