Solve for a
a\neq 0
b=\frac{2}{9}\text{ and }a\neq 0
Solve for b
b = \frac{2}{9} = 0.2222222222222222
a\neq 0
Share
Copied to clipboard
3\left(a+b\right)-3b\times 6a=3b-a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6a, the least common multiple of 2a,6a.
3a+3b-3b\times 6a=3b-a
Use the distributive property to multiply 3 by a+b.
3a+3b-18ba=3b-a
Multiply -3 and 6 to get -18.
3a+3b-18ba+a=3b
Add a to both sides.
4a+3b-18ba=3b
Combine 3a and a to get 4a.
4a-18ba=3b-3b
Subtract 3b from both sides.
4a-18ba=0
Combine 3b and -3b to get 0.
\left(4-18b\right)a=0
Combine all terms containing a.
a=0
Divide 0 by 4-18b.
a\in \emptyset
Variable a cannot be equal to 0.
3\left(a+b\right)-3b\times 6a=3b-a
Multiply both sides of the equation by 6a, the least common multiple of 2a,6a.
3a+3b-3b\times 6a=3b-a
Use the distributive property to multiply 3 by a+b.
3a+3b-18ba=3b-a
Multiply -3 and 6 to get -18.
3a+3b-18ba-3b=-a
Subtract 3b from both sides.
3a-18ba=-a
Combine 3b and -3b to get 0.
-18ba=-a-3a
Subtract 3a from both sides.
-18ba=-4a
Combine -a and -3a to get -4a.
\left(-18a\right)b=-4a
The equation is in standard form.
\frac{\left(-18a\right)b}{-18a}=-\frac{4a}{-18a}
Divide both sides by -18a.
b=-\frac{4a}{-18a}
Dividing by -18a undoes the multiplication by -18a.
b=\frac{2}{9}
Divide -4a by -18a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}