Evaluate
-\frac{2a}{3b}+1
Expand
-\frac{2a}{3b}+1
Share
Copied to clipboard
\frac{\left(a+b\right)\times 3b}{6ab}-\frac{\left(2a-b\right)\times 2a}{6ab}-\frac{3b-a}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a and 3b is 6ab. Multiply \frac{a+b}{2a} times \frac{3b}{3b}. Multiply \frac{2a-b}{3b} times \frac{2a}{2a}.
\frac{\left(a+b\right)\times 3b-\left(2a-b\right)\times 2a}{6ab}-\frac{3b-a}{6a}
Since \frac{\left(a+b\right)\times 3b}{6ab} and \frac{\left(2a-b\right)\times 2a}{6ab} have the same denominator, subtract them by subtracting their numerators.
\frac{3ab+3b^{2}-4a^{2}+2ba}{6ab}-\frac{3b-a}{6a}
Do the multiplications in \left(a+b\right)\times 3b-\left(2a-b\right)\times 2a.
\frac{3b^{2}+5ab-4a^{2}}{6ab}-\frac{3b-a}{6a}
Combine like terms in 3ab+3b^{2}-4a^{2}+2ba.
\frac{3b^{2}+5ab-4a^{2}}{6ab}-\frac{\left(3b-a\right)b}{6ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6ab and 6a is 6ab. Multiply \frac{3b-a}{6a} times \frac{b}{b}.
\frac{3b^{2}+5ab-4a^{2}-\left(3b-a\right)b}{6ab}
Since \frac{3b^{2}+5ab-4a^{2}}{6ab} and \frac{\left(3b-a\right)b}{6ab} have the same denominator, subtract them by subtracting their numerators.
\frac{3b^{2}+5ab-4a^{2}-3b^{2}+ab}{6ab}
Do the multiplications in 3b^{2}+5ab-4a^{2}-\left(3b-a\right)b.
\frac{6ab-4a^{2}}{6ab}
Combine like terms in 3b^{2}+5ab-4a^{2}-3b^{2}+ab.
\frac{2a\left(-2a+3b\right)}{6ab}
Factor the expressions that are not already factored in \frac{6ab-4a^{2}}{6ab}.
\frac{-2a+3b}{3b}
Cancel out 2a in both numerator and denominator.
\frac{\left(a+b\right)\times 3b}{6ab}-\frac{\left(2a-b\right)\times 2a}{6ab}-\frac{3b-a}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a and 3b is 6ab. Multiply \frac{a+b}{2a} times \frac{3b}{3b}. Multiply \frac{2a-b}{3b} times \frac{2a}{2a}.
\frac{\left(a+b\right)\times 3b-\left(2a-b\right)\times 2a}{6ab}-\frac{3b-a}{6a}
Since \frac{\left(a+b\right)\times 3b}{6ab} and \frac{\left(2a-b\right)\times 2a}{6ab} have the same denominator, subtract them by subtracting their numerators.
\frac{3ab+3b^{2}-4a^{2}+2ba}{6ab}-\frac{3b-a}{6a}
Do the multiplications in \left(a+b\right)\times 3b-\left(2a-b\right)\times 2a.
\frac{3b^{2}+5ab-4a^{2}}{6ab}-\frac{3b-a}{6a}
Combine like terms in 3ab+3b^{2}-4a^{2}+2ba.
\frac{3b^{2}+5ab-4a^{2}}{6ab}-\frac{\left(3b-a\right)b}{6ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6ab and 6a is 6ab. Multiply \frac{3b-a}{6a} times \frac{b}{b}.
\frac{3b^{2}+5ab-4a^{2}-\left(3b-a\right)b}{6ab}
Since \frac{3b^{2}+5ab-4a^{2}}{6ab} and \frac{\left(3b-a\right)b}{6ab} have the same denominator, subtract them by subtracting their numerators.
\frac{3b^{2}+5ab-4a^{2}-3b^{2}+ab}{6ab}
Do the multiplications in 3b^{2}+5ab-4a^{2}-\left(3b-a\right)b.
\frac{6ab-4a^{2}}{6ab}
Combine like terms in 3b^{2}+5ab-4a^{2}-3b^{2}+ab.
\frac{2a\left(-2a+3b\right)}{6ab}
Factor the expressions that are not already factored in \frac{6ab-4a^{2}}{6ab}.
\frac{-2a+3b}{3b}
Cancel out 2a in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}