Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+b+1}{b\left(a+b-1\right)}-\frac{a+1}{b\left(a-1\right)}
Factor b^{2}+ab-b. Factor ab-b.
\frac{\left(a+b+1\right)\left(a-1\right)}{b\left(a-1\right)\left(a+b-1\right)}-\frac{\left(a+1\right)\left(a+b-1\right)}{b\left(a-1\right)\left(a+b-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(a+b-1\right) and b\left(a-1\right) is b\left(a-1\right)\left(a+b-1\right). Multiply \frac{a+b+1}{b\left(a+b-1\right)} times \frac{a-1}{a-1}. Multiply \frac{a+1}{b\left(a-1\right)} times \frac{a+b-1}{a+b-1}.
\frac{\left(a+b+1\right)\left(a-1\right)-\left(a+1\right)\left(a+b-1\right)}{b\left(a-1\right)\left(a+b-1\right)}
Since \frac{\left(a+b+1\right)\left(a-1\right)}{b\left(a-1\right)\left(a+b-1\right)} and \frac{\left(a+1\right)\left(a+b-1\right)}{b\left(a-1\right)\left(a+b-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+ab-b+a-1-a^{2}-ab+a-a-b+1}{b\left(a-1\right)\left(a+b-1\right)}
Do the multiplications in \left(a+b+1\right)\left(a-1\right)-\left(a+1\right)\left(a+b-1\right).
\frac{-2b}{b\left(a-1\right)\left(a+b-1\right)}
Combine like terms in a^{2}-a+ab-b+a-1-a^{2}-ab+a-a-b+1.
\frac{-2}{\left(a-1\right)\left(a+b-1\right)}
Cancel out b in both numerator and denominator.
\frac{-2}{a^{2}+ab-2a-b+1}
Expand \left(a-1\right)\left(a+b-1\right).
\frac{a+b+1}{b\left(a+b-1\right)}-\frac{a+1}{b\left(a-1\right)}
Factor b^{2}+ab-b. Factor ab-b.
\frac{\left(a+b+1\right)\left(a-1\right)}{b\left(a-1\right)\left(a+b-1\right)}-\frac{\left(a+1\right)\left(a+b-1\right)}{b\left(a-1\right)\left(a+b-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(a+b-1\right) and b\left(a-1\right) is b\left(a-1\right)\left(a+b-1\right). Multiply \frac{a+b+1}{b\left(a+b-1\right)} times \frac{a-1}{a-1}. Multiply \frac{a+1}{b\left(a-1\right)} times \frac{a+b-1}{a+b-1}.
\frac{\left(a+b+1\right)\left(a-1\right)-\left(a+1\right)\left(a+b-1\right)}{b\left(a-1\right)\left(a+b-1\right)}
Since \frac{\left(a+b+1\right)\left(a-1\right)}{b\left(a-1\right)\left(a+b-1\right)} and \frac{\left(a+1\right)\left(a+b-1\right)}{b\left(a-1\right)\left(a+b-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+ab-b+a-1-a^{2}-ab+a-a-b+1}{b\left(a-1\right)\left(a+b-1\right)}
Do the multiplications in \left(a+b+1\right)\left(a-1\right)-\left(a+1\right)\left(a+b-1\right).
\frac{-2b}{b\left(a-1\right)\left(a+b-1\right)}
Combine like terms in a^{2}-a+ab-b+a-1-a^{2}-ab+a-a-b+1.
\frac{-2}{\left(a-1\right)\left(a+b-1\right)}
Cancel out b in both numerator and denominator.
\frac{-2}{a^{2}+ab-2a-b+1}
Expand \left(a-1\right)\left(a+b-1\right).