Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
Divide \frac{a+4}{a^{2}-6a+9} by \frac{a^{2}-16}{2a-6} by multiplying \frac{a+4}{a^{2}-6a+9} by the reciprocal of \frac{a^{2}-16}{2a-6}.
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
Factor the expressions that are not already factored in \frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
Cancel out \left(a-3\right)\left(a+4\right) in both numerator and denominator.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-4\right)\left(a-3\right) and a-4 is \left(a-4\right)\left(a-3\right). Multiply \frac{2}{a-4} times \frac{a-3}{a-3}.
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Since \frac{2}{\left(a-4\right)\left(a-3\right)} and \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
Do the multiplications in 2-2\left(a-3\right).
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
Combine like terms in 2-2a+6.
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
Factor the expressions that are not already factored in \frac{8-2a}{\left(a-4\right)\left(a-3\right)}.
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
Extract the negative sign in 4-a.
\frac{-2}{a-3}
Cancel out a-4 in both numerator and denominator.
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
Divide \frac{a+4}{a^{2}-6a+9} by \frac{a^{2}-16}{2a-6} by multiplying \frac{a+4}{a^{2}-6a+9} by the reciprocal of \frac{a^{2}-16}{2a-6}.
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
Factor the expressions that are not already factored in \frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
Cancel out \left(a-3\right)\left(a+4\right) in both numerator and denominator.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-4\right)\left(a-3\right) and a-4 is \left(a-4\right)\left(a-3\right). Multiply \frac{2}{a-4} times \frac{a-3}{a-3}.
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Since \frac{2}{\left(a-4\right)\left(a-3\right)} and \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
Do the multiplications in 2-2\left(a-3\right).
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
Combine like terms in 2-2a+6.
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
Factor the expressions that are not already factored in \frac{8-2a}{\left(a-4\right)\left(a-3\right)}.
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
Extract the negative sign in 4-a.
\frac{-2}{a-3}
Cancel out a-4 in both numerator and denominator.