Evaluate
-1
Factor
-1
Share
Copied to clipboard
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{a-3b}{b\left(a+3b\right)}-\frac{2a^{2}+18b^{2}}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Factor ab+3b^{2}. Factor a^{2}b-9b^{3}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{\left(a-3b\right)\left(a-3b\right)}{b\left(a-3b\right)\left(a+3b\right)}-\frac{2a^{2}+18b^{2}}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(a+3b\right) and b\left(a-3b\right)\left(a+3b\right) is b\left(a-3b\right)\left(a+3b\right). Multiply \frac{a-3b}{b\left(a+3b\right)} times \frac{a-3b}{a-3b}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{\left(a-3b\right)\left(a-3b\right)-\left(2a^{2}+18b^{2}\right)}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Since \frac{\left(a-3b\right)\left(a-3b\right)}{b\left(a-3b\right)\left(a+3b\right)} and \frac{2a^{2}+18b^{2}}{b\left(a-3b\right)\left(a+3b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{a^{2}-3ab-3ab+9b^{2}-2a^{2}-18b^{2}}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Do the multiplications in \left(a-3b\right)\left(a-3b\right)-\left(2a^{2}+18b^{2}\right).
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{-a^{2}-9b^{2}-6ab}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Combine like terms in a^{2}-3ab-3ab+9b^{2}-2a^{2}-18b^{2}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{\left(a+3b\right)\left(-a-3b\right)}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Factor the expressions that are not already factored in \frac{-a^{2}-9b^{2}-6ab}{b\left(a-3b\right)\left(a+3b\right)}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{-\left(a+3b\right)\left(a+3b\right)}{b\left(a-3b\right)\left(a+3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Extract the negative sign in -a-3b.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{\frac{-\left(a+3b\right)}{b\left(a-3b\right)}}{\frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}}-\frac{6}{a-b}}
Cancel out a+3b in both numerator and denominator.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-\left(a+3b\right)\left(a^{2}-6ab+9b^{2}\right)}{b\left(a-3b\right)\left(a^{2}+2ab-3b^{2}\right)}-\frac{6}{a-b}}
Divide \frac{-\left(a+3b\right)}{b\left(a-3b\right)} by \frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}} by multiplying \frac{-\left(a+3b\right)}{b\left(a-3b\right)} by the reciprocal of \frac{a^{2}+2ab-3b^{2}}{a^{2}-6ab+9b^{2}}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-\left(a+3b\right)\left(a-3b\right)^{2}}{b\left(a-3b\right)\left(a-b\right)\left(a+3b\right)}-\frac{6}{a-b}}
Factor the expressions that are not already factored in \frac{-\left(a+3b\right)\left(a^{2}-6ab+9b^{2}\right)}{b\left(a-3b\right)\left(a^{2}+2ab-3b^{2}\right)}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-\left(a-3b\right)}{b\left(a-b\right)}-\frac{6}{a-b}}
Cancel out \left(a-3b\right)\left(a+3b\right) in both numerator and denominator.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-\left(a-3b\right)}{b\left(a-b\right)}-\frac{6b}{b\left(a-b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(a-b\right) and a-b is b\left(a-b\right). Multiply \frac{6}{a-b} times \frac{b}{b}.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-\left(a-3b\right)-6b}{b\left(a-b\right)}}
Since \frac{-\left(a-3b\right)}{b\left(a-b\right)} and \frac{6b}{b\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-a+3b-6b}{b\left(a-b\right)}}
Do the multiplications in -\left(a-3b\right)-6b.
\frac{\frac{a+3b}{ab-b^{2}}}{\frac{-a-3b}{b\left(a-b\right)}}
Combine like terms in -a+3b-6b.
\frac{\left(a+3b\right)b\left(a-b\right)}{\left(ab-b^{2}\right)\left(-a-3b\right)}
Divide \frac{a+3b}{ab-b^{2}} by \frac{-a-3b}{b\left(a-b\right)} by multiplying \frac{a+3b}{ab-b^{2}} by the reciprocal of \frac{-a-3b}{b\left(a-b\right)}.
\frac{-b\left(a-b\right)\left(-a-3b\right)}{\left(-a-3b\right)\left(ab-b^{2}\right)}
Extract the negative sign in a+3b.
\frac{-b\left(a-b\right)}{ab-b^{2}}
Cancel out -a-3b in both numerator and denominator.
\frac{-b\left(a-b\right)}{b\left(a-b\right)}
Factor the expressions that are not already factored.
-1
Cancel out b\left(a-b\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}