Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+3}{2\left(a+3\right)}+\frac{a+1}{a^{2}+2a-3}
Factor the expressions that are not already factored in \frac{a+3}{2a+6}.
\frac{1}{2}+\frac{a+1}{a^{2}+2a-3}
Cancel out a+3 in both numerator and denominator.
\frac{1}{2}+\frac{a+1}{\left(a-1\right)\left(a+3\right)}
Factor a^{2}+2a-3.
\frac{\left(a-1\right)\left(a+3\right)}{2\left(a-1\right)\left(a+3\right)}+\frac{2\left(a+1\right)}{2\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and \left(a-1\right)\left(a+3\right) is 2\left(a-1\right)\left(a+3\right). Multiply \frac{1}{2} times \frac{\left(a-1\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)}. Multiply \frac{a+1}{\left(a-1\right)\left(a+3\right)} times \frac{2}{2}.
\frac{\left(a-1\right)\left(a+3\right)+2\left(a+1\right)}{2\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a-1\right)\left(a+3\right)}{2\left(a-1\right)\left(a+3\right)} and \frac{2\left(a+1\right)}{2\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a-a-3+2a+2}{2\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a-1\right)\left(a+3\right)+2\left(a+1\right).
\frac{a^{2}+4a-1}{2\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{2}+3a-a-3+2a+2.
\frac{a^{2}+4a-1}{2a^{2}+4a-6}
Expand 2\left(a-1\right)\left(a+3\right).
\frac{a+3}{2\left(a+3\right)}+\frac{a+1}{a^{2}+2a-3}
Factor the expressions that are not already factored in \frac{a+3}{2a+6}.
\frac{1}{2}+\frac{a+1}{a^{2}+2a-3}
Cancel out a+3 in both numerator and denominator.
\frac{1}{2}+\frac{a+1}{\left(a-1\right)\left(a+3\right)}
Factor a^{2}+2a-3.
\frac{\left(a-1\right)\left(a+3\right)}{2\left(a-1\right)\left(a+3\right)}+\frac{2\left(a+1\right)}{2\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and \left(a-1\right)\left(a+3\right) is 2\left(a-1\right)\left(a+3\right). Multiply \frac{1}{2} times \frac{\left(a-1\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)}. Multiply \frac{a+1}{\left(a-1\right)\left(a+3\right)} times \frac{2}{2}.
\frac{\left(a-1\right)\left(a+3\right)+2\left(a+1\right)}{2\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a-1\right)\left(a+3\right)}{2\left(a-1\right)\left(a+3\right)} and \frac{2\left(a+1\right)}{2\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a-a-3+2a+2}{2\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a-1\right)\left(a+3\right)+2\left(a+1\right).
\frac{a^{2}+4a-1}{2\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{2}+3a-a-3+2a+2.
\frac{a^{2}+4a-1}{2a^{2}+4a-6}
Expand 2\left(a-1\right)\left(a+3\right).