Evaluate
\frac{2a+5}{\left(a-4\right)\left(a-2\right)}
Expand
\frac{2a+5}{\left(a-4\right)\left(a-2\right)}
Share
Copied to clipboard
\frac{a+2}{\left(a-3\right)\left(a-2\right)}+\frac{a+2}{\left(a-4\right)\left(a-3\right)}+\frac{1}{a^{2}-6a+8}
Factor a^{2}-5a+6. Factor a^{2}-7a+12.
\frac{\left(a+2\right)\left(a-4\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{\left(a+2\right)\left(a-2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a-2\right) and \left(a-4\right)\left(a-3\right) is \left(a-4\right)\left(a-3\right)\left(a-2\right). Multiply \frac{a+2}{\left(a-3\right)\left(a-2\right)} times \frac{a-4}{a-4}. Multiply \frac{a+2}{\left(a-4\right)\left(a-3\right)} times \frac{a-2}{a-2}.
\frac{\left(a+2\right)\left(a-4\right)+\left(a+2\right)\left(a-2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Since \frac{\left(a+2\right)\left(a-4\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)} and \frac{\left(a+2\right)\left(a-2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-4a+2a-8+a^{2}-2a+2a-4}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Do the multiplications in \left(a+2\right)\left(a-4\right)+\left(a+2\right)\left(a-2\right).
\frac{2a^{2}-2a-12}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Combine like terms in a^{2}-4a+2a-8+a^{2}-2a+2a-4.
\frac{2\left(a-3\right)\left(a+2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Factor the expressions that are not already factored in \frac{2a^{2}-2a-12}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}.
\frac{2\left(a+2\right)}{\left(a-4\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Cancel out a-3 in both numerator and denominator.
\frac{2\left(a+2\right)}{\left(a-4\right)\left(a-2\right)}+\frac{1}{\left(a-4\right)\left(a-2\right)}
Factor a^{2}-6a+8.
\frac{2\left(a+2\right)+1}{\left(a-4\right)\left(a-2\right)}
Since \frac{2\left(a+2\right)}{\left(a-4\right)\left(a-2\right)} and \frac{1}{\left(a-4\right)\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{2a+4+1}{\left(a-4\right)\left(a-2\right)}
Do the multiplications in 2\left(a+2\right)+1.
\frac{2a+5}{\left(a-4\right)\left(a-2\right)}
Combine like terms in 2a+4+1.
\frac{2a+5}{a^{2}-6a+8}
Expand \left(a-4\right)\left(a-2\right).
\frac{a+2}{\left(a-3\right)\left(a-2\right)}+\frac{a+2}{\left(a-4\right)\left(a-3\right)}+\frac{1}{a^{2}-6a+8}
Factor a^{2}-5a+6. Factor a^{2}-7a+12.
\frac{\left(a+2\right)\left(a-4\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{\left(a+2\right)\left(a-2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a-2\right) and \left(a-4\right)\left(a-3\right) is \left(a-4\right)\left(a-3\right)\left(a-2\right). Multiply \frac{a+2}{\left(a-3\right)\left(a-2\right)} times \frac{a-4}{a-4}. Multiply \frac{a+2}{\left(a-4\right)\left(a-3\right)} times \frac{a-2}{a-2}.
\frac{\left(a+2\right)\left(a-4\right)+\left(a+2\right)\left(a-2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Since \frac{\left(a+2\right)\left(a-4\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)} and \frac{\left(a+2\right)\left(a-2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-4a+2a-8+a^{2}-2a+2a-4}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Do the multiplications in \left(a+2\right)\left(a-4\right)+\left(a+2\right)\left(a-2\right).
\frac{2a^{2}-2a-12}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Combine like terms in a^{2}-4a+2a-8+a^{2}-2a+2a-4.
\frac{2\left(a-3\right)\left(a+2\right)}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Factor the expressions that are not already factored in \frac{2a^{2}-2a-12}{\left(a-4\right)\left(a-3\right)\left(a-2\right)}.
\frac{2\left(a+2\right)}{\left(a-4\right)\left(a-2\right)}+\frac{1}{a^{2}-6a+8}
Cancel out a-3 in both numerator and denominator.
\frac{2\left(a+2\right)}{\left(a-4\right)\left(a-2\right)}+\frac{1}{\left(a-4\right)\left(a-2\right)}
Factor a^{2}-6a+8.
\frac{2\left(a+2\right)+1}{\left(a-4\right)\left(a-2\right)}
Since \frac{2\left(a+2\right)}{\left(a-4\right)\left(a-2\right)} and \frac{1}{\left(a-4\right)\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{2a+4+1}{\left(a-4\right)\left(a-2\right)}
Do the multiplications in 2\left(a+2\right)+1.
\frac{2a+5}{\left(a-4\right)\left(a-2\right)}
Combine like terms in 2a+4+1.
\frac{2a+5}{a^{2}-6a+8}
Expand \left(a-4\right)\left(a-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}