Evaluate
\frac{14a}{15}+\frac{1}{3}
Expand
\frac{14a}{15}+\frac{1}{3}
Quiz
Polynomial
5 problems similar to:
\frac { a + 2 } { 3 } + \frac { 3 a } { 5 } - \frac { 1 } { 3 }
Share
Copied to clipboard
\frac{5\left(a+2\right)}{15}+\frac{3\times 3a}{15}-\frac{1}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{a+2}{3} times \frac{5}{5}. Multiply \frac{3a}{5} times \frac{3}{3}.
\frac{5\left(a+2\right)+3\times 3a}{15}-\frac{1}{3}
Since \frac{5\left(a+2\right)}{15} and \frac{3\times 3a}{15} have the same denominator, add them by adding their numerators.
\frac{5a+10+9a}{15}-\frac{1}{3}
Do the multiplications in 5\left(a+2\right)+3\times 3a.
\frac{14a+10}{15}-\frac{1}{3}
Combine like terms in 5a+10+9a.
\frac{14a+10}{15}-\frac{5}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 3 is 15. Multiply \frac{1}{3} times \frac{5}{5}.
\frac{14a+10-5}{15}
Since \frac{14a+10}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{14a+5}{15}
Combine like terms in 14a+10-5.
\frac{5\left(a+2\right)}{15}+\frac{3\times 3a}{15}-\frac{1}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{a+2}{3} times \frac{5}{5}. Multiply \frac{3a}{5} times \frac{3}{3}.
\frac{5\left(a+2\right)+3\times 3a}{15}-\frac{1}{3}
Since \frac{5\left(a+2\right)}{15} and \frac{3\times 3a}{15} have the same denominator, add them by adding their numerators.
\frac{5a+10+9a}{15}-\frac{1}{3}
Do the multiplications in 5\left(a+2\right)+3\times 3a.
\frac{14a+10}{15}-\frac{1}{3}
Combine like terms in 5a+10+9a.
\frac{14a+10}{15}-\frac{5}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 3 is 15. Multiply \frac{1}{3} times \frac{5}{5}.
\frac{14a+10-5}{15}
Since \frac{14a+10}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{14a+5}{15}
Combine like terms in 14a+10-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}