Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+2}{2\left(a-1\right)}-\frac{3}{\left(a-1\right)\left(a+1\right)}
Factor 2a-2. Factor a^{2}-1.
\frac{\left(a+2\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}-\frac{3\times 2}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-1\right) and \left(a-1\right)\left(a+1\right) is 2\left(a-1\right)\left(a+1\right). Multiply \frac{a+2}{2\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{3}{\left(a-1\right)\left(a+1\right)} times \frac{2}{2}.
\frac{\left(a+2\right)\left(a+1\right)-3\times 2}{2\left(a-1\right)\left(a+1\right)}
Since \frac{\left(a+2\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{3\times 2}{2\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a+2a+2-6}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in \left(a+2\right)\left(a+1\right)-3\times 2.
\frac{a^{2}+3a-4}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}+a+2a+2-6.
\frac{\left(a-1\right)\left(a+4\right)}{2\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored in \frac{a^{2}+3a-4}{2\left(a-1\right)\left(a+1\right)}.
\frac{a+4}{2\left(a+1\right)}
Cancel out a-1 in both numerator and denominator.
\frac{a+4}{2a+2}
Expand 2\left(a+1\right).
\frac{a+2}{2\left(a-1\right)}-\frac{3}{\left(a-1\right)\left(a+1\right)}
Factor 2a-2. Factor a^{2}-1.
\frac{\left(a+2\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}-\frac{3\times 2}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-1\right) and \left(a-1\right)\left(a+1\right) is 2\left(a-1\right)\left(a+1\right). Multiply \frac{a+2}{2\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{3}{\left(a-1\right)\left(a+1\right)} times \frac{2}{2}.
\frac{\left(a+2\right)\left(a+1\right)-3\times 2}{2\left(a-1\right)\left(a+1\right)}
Since \frac{\left(a+2\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{3\times 2}{2\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a+2a+2-6}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in \left(a+2\right)\left(a+1\right)-3\times 2.
\frac{a^{2}+3a-4}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}+a+2a+2-6.
\frac{\left(a-1\right)\left(a+4\right)}{2\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored in \frac{a^{2}+3a-4}{2\left(a-1\right)\left(a+1\right)}.
\frac{a+4}{2\left(a+1\right)}
Cancel out a-1 in both numerator and denominator.
\frac{a+4}{2a+2}
Expand 2\left(a+1\right).