Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+1}{a-3}-\frac{\left(a-3\right)\left(a^{2}-4\right)}{\left(a+2\right)\left(a^{2}-6a+9\right)}
Divide \frac{a-3}{a+2} by \frac{a^{2}-6a+9}{a^{2}-4} by multiplying \frac{a-3}{a+2} by the reciprocal of \frac{a^{2}-6a+9}{a^{2}-4}.
\frac{a+1}{a-3}-\frac{\left(a-3\right)\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-3\right)^{2}}
Factor the expressions that are not already factored in \frac{\left(a-3\right)\left(a^{2}-4\right)}{\left(a+2\right)\left(a^{2}-6a+9\right)}.
\frac{a+1}{a-3}-\frac{a-2}{a-3}
Cancel out \left(a-3\right)\left(a+2\right) in both numerator and denominator.
\frac{a+1-\left(a-2\right)}{a-3}
Since \frac{a+1}{a-3} and \frac{a-2}{a-3} have the same denominator, subtract them by subtracting their numerators.
\frac{a+1-a+2}{a-3}
Do the multiplications in a+1-\left(a-2\right).
\frac{3}{a-3}
Combine like terms in a+1-a+2.
\frac{a+1}{a-3}-\frac{\left(a-3\right)\left(a^{2}-4\right)}{\left(a+2\right)\left(a^{2}-6a+9\right)}
Divide \frac{a-3}{a+2} by \frac{a^{2}-6a+9}{a^{2}-4} by multiplying \frac{a-3}{a+2} by the reciprocal of \frac{a^{2}-6a+9}{a^{2}-4}.
\frac{a+1}{a-3}-\frac{\left(a-3\right)\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-3\right)^{2}}
Factor the expressions that are not already factored in \frac{\left(a-3\right)\left(a^{2}-4\right)}{\left(a+2\right)\left(a^{2}-6a+9\right)}.
\frac{a+1}{a-3}-\frac{a-2}{a-3}
Cancel out \left(a-3\right)\left(a+2\right) in both numerator and denominator.
\frac{a+1-\left(a-2\right)}{a-3}
Since \frac{a+1}{a-3} and \frac{a-2}{a-3} have the same denominator, subtract them by subtracting their numerators.
\frac{a+1-a+2}{a-3}
Do the multiplications in a+1-\left(a-2\right).
\frac{3}{a-3}
Combine like terms in a+1-a+2.