Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Factor a^{2}-a. Factor a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right) and a\left(a+1\right) is a\left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{a\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{a-1}{a\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Since \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} and \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Do the multiplications in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Combine like terms in a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Since \frac{4}{\left(a-1\right)\left(a+1\right)} and \frac{1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 4 to get 3.
\frac{3}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Factor a^{2}-a. Factor a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right) and a\left(a+1\right) is a\left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{a\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{a-1}{a\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Since \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} and \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Do the multiplications in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Combine like terms in a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Since \frac{4}{\left(a-1\right)\left(a+1\right)} and \frac{1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 4 to get 3.
\frac{3}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).