Evaluate
\frac{3}{a^{2}-1}
Expand
\frac{3}{a^{2}-1}
Share
Copied to clipboard
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Factor a^{2}-a. Factor a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right) and a\left(a+1\right) is a\left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{a\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{a-1}{a\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Since \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} and \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Do the multiplications in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Combine like terms in a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Since \frac{4}{\left(a-1\right)\left(a+1\right)} and \frac{1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 4 to get 3.
\frac{3}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Factor a^{2}-a. Factor a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right) and a\left(a+1\right) is a\left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{a\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{a-1}{a\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Since \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} and \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Do the multiplications in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Combine like terms in a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cancel out a in both numerator and denominator.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Since \frac{4}{\left(a-1\right)\left(a+1\right)} and \frac{1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 4 to get 3.
\frac{3}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}