Evaluate
-\frac{6}{\left(a-1\right)^{3}}
Expand
\frac{6}{\left(1-a\right)\left(a^{2}-2a+1\right)}
Share
Copied to clipboard
\frac{\left(a+1\right)\times 6}{\left(a^{2}-2a+1\right)\left(1-a^{2}\right)}
Multiply \frac{a+1}{a^{2}-2a+1} times \frac{6}{1-a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{6\left(a+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-6\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a-1\right)^{2}}
Extract the negative sign in 1+a.
\frac{-6}{\left(a-1\right)\left(a-1\right)^{2}}
Cancel out -a-1 in both numerator and denominator.
\frac{-6}{a^{3}-3a^{2}+3a-1}
Expand the expression.
\frac{\left(a+1\right)\times 6}{\left(a^{2}-2a+1\right)\left(1-a^{2}\right)}
Multiply \frac{a+1}{a^{2}-2a+1} times \frac{6}{1-a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{6\left(a+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-6\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a-1\right)^{2}}
Extract the negative sign in 1+a.
\frac{-6}{\left(a-1\right)\left(a-1\right)^{2}}
Cancel out -a-1 in both numerator and denominator.
\frac{-6}{a^{3}-3a^{2}+3a-1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}