Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+1}{2\left(a-1\right)}+\frac{6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Factor 2a-2. Factor 2a^{2}-2.
\frac{\left(a+1\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}+\frac{6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-1\right) and 2\left(a-1\right)\left(a+1\right) is 2\left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{2\left(a-1\right)} times \frac{a+1}{a+1}.
\frac{\left(a+1\right)\left(a+1\right)+6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Since \frac{\left(a+1\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{6}{2\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+a+a+1+6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Do the multiplications in \left(a+1\right)\left(a+1\right)+6.
\frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Combine like terms in a^{2}+a+a+1+6.
\frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2\left(a+1\right)}
Factor 2a+2.
\frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)}-\frac{\left(a+3\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-1\right)\left(a+1\right) and 2\left(a+1\right) is 2\left(a-1\right)\left(a+1\right). Multiply \frac{a+3}{2\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{a^{2}+2a+7-\left(a+3\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}
Since \frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)} and \frac{\left(a+3\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a+7-a^{2}+a-3a+3}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in a^{2}+2a+7-\left(a+3\right)\left(a-1\right).
\frac{10}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}+2a+7-a^{2}+a-3a+3.
\frac{10}{2a^{2}-2}
Expand 2\left(a-1\right)\left(a+1\right).
\frac{a+1}{2\left(a-1\right)}+\frac{6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Factor 2a-2. Factor 2a^{2}-2.
\frac{\left(a+1\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}+\frac{6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-1\right) and 2\left(a-1\right)\left(a+1\right) is 2\left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{2\left(a-1\right)} times \frac{a+1}{a+1}.
\frac{\left(a+1\right)\left(a+1\right)+6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Since \frac{\left(a+1\right)\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{6}{2\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+a+a+1+6}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Do the multiplications in \left(a+1\right)\left(a+1\right)+6.
\frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2a+2}
Combine like terms in a^{2}+a+a+1+6.
\frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)}-\frac{a+3}{2\left(a+1\right)}
Factor 2a+2.
\frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)}-\frac{\left(a+3\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-1\right)\left(a+1\right) and 2\left(a+1\right) is 2\left(a-1\right)\left(a+1\right). Multiply \frac{a+3}{2\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{a^{2}+2a+7-\left(a+3\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}
Since \frac{a^{2}+2a+7}{2\left(a-1\right)\left(a+1\right)} and \frac{\left(a+3\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a+7-a^{2}+a-3a+3}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in a^{2}+2a+7-\left(a+3\right)\left(a-1\right).
\frac{10}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in a^{2}+2a+7-a^{2}+a-3a+3.
\frac{10}{2a^{2}-2}
Expand 2\left(a-1\right)\left(a+1\right).