Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+1+a^{2}}{a^{2}-1}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Express \frac{a^{2}+2a+1}{a-1}\left(a^{2}-4\right) as a single fraction.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Factor a^{2}-1.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1} times \frac{a+1}{a+1}.
\frac{a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4}{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right).
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{\left(a-1\right)\left(a+1\right)}
Combine like terms in a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4.
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a+1+a^{2}}{a^{2}-1}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Express \frac{a^{2}+2a+1}{a-1}\left(a^{2}-4\right) as a single fraction.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Factor a^{2}-1.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1} times \frac{a+1}{a+1}.
\frac{a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4}{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right).
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{\left(a-1\right)\left(a+1\right)}
Combine like terms in a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4.
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).