Evaluate
\frac{a^{5}+3a^{4}-a^{3}-10a^{2}-11a-3}{a^{2}-1}
Expand
\frac{a^{5}+3a^{4}-a^{3}-10a^{2}-11a-3}{a^{2}-1}
Share
Copied to clipboard
\frac{a+1+a^{2}}{a^{2}-1}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Express \frac{a^{2}+2a+1}{a-1}\left(a^{2}-4\right) as a single fraction.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Factor a^{2}-1.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1} times \frac{a+1}{a+1}.
\frac{a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4}{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right).
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{\left(a-1\right)\left(a+1\right)}
Combine like terms in a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4.
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
\frac{a+1+a^{2}}{a^{2}-1}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Express \frac{a^{2}+2a+1}{a-1}\left(a^{2}-4\right) as a single fraction.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1}
Factor a^{2}-1.
\frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)}+\frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)}{a-1} times \frac{a+1}{a+1}.
\frac{a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}
Since \frac{a+1+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4}{\left(a-1\right)\left(a+1\right)}
Do the multiplications in a+1+a^{2}+\left(a^{2}+2a+1\right)\left(a^{2}-4\right)\left(a+1\right).
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{\left(a-1\right)\left(a+1\right)}
Combine like terms in a+1+a^{2}+a^{5}+a^{4}-4a^{3}-4a^{2}+2a^{4}+2a^{3}-8a^{2}-8a+a^{3}+a^{2}-4a-4.
\frac{-11a-3-10a^{2}+a^{5}+3a^{4}-a^{3}}{a^{2}-1}
Expand \left(a-1\right)\left(a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}