Solve for a
a=5
Share
Copied to clipboard
a+\frac{1}{5}-2\left(2+\frac{3}{5}\right)=0
Multiply both sides of the equation by 10, the least common multiple of 10,5.
a+\frac{1}{5}-2\left(\frac{10}{5}+\frac{3}{5}\right)=0
Convert 2 to fraction \frac{10}{5}.
a+\frac{1}{5}-2\times \frac{10+3}{5}=0
Since \frac{10}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
a+\frac{1}{5}-2\times \frac{13}{5}=0
Add 10 and 3 to get 13.
a+\frac{1}{5}+\frac{-2\times 13}{5}=0
Express -2\times \frac{13}{5} as a single fraction.
a+\frac{1}{5}+\frac{-26}{5}=0
Multiply -2 and 13 to get -26.
a+\frac{1}{5}-\frac{26}{5}=0
Fraction \frac{-26}{5} can be rewritten as -\frac{26}{5} by extracting the negative sign.
a+\frac{1-26}{5}=0
Since \frac{1}{5} and \frac{26}{5} have the same denominator, subtract them by subtracting their numerators.
a+\frac{-25}{5}=0
Subtract 26 from 1 to get -25.
a-5=0
Divide -25 by 5 to get -5.
a=5
Add 5 to both sides. Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}