Solve for I_g
\left\{\begin{matrix}I_{g}=\frac{T_{b}\left(R_{a}+R_{b}\right)}{R_{a}}\text{, }&R_{a}\neq -R_{b}\text{ and }T_{b}\neq 0\text{ and }R_{a}\neq 0\\I_{g}\neq 0\text{, }&R_{a}=0\text{ and }T_{b}=0\text{ and }R_{b}\neq 0\end{matrix}\right.
Solve for R_a
\left\{\begin{matrix}R_{a}=-\frac{R_{b}T_{b}}{T_{b}-I_{g}}\text{, }&R_{b}\neq 0\text{ and }I_{g}\neq 0\text{ and }T_{b}\neq I_{g}\\R_{a}\neq 0\text{, }&R_{b}=0\text{ and }T_{b}=I_{g}\text{ and }I_{g}\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(R_{a}+R_{b}\right)T_{b}=I_{g}R_{a}
Variable I_{g} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by I_{g}\left(R_{a}+R_{b}\right), the least common multiple of I_{g},R_{a}+R_{b}.
R_{a}T_{b}+R_{b}T_{b}=I_{g}R_{a}
Use the distributive property to multiply R_{a}+R_{b} by T_{b}.
I_{g}R_{a}=R_{a}T_{b}+R_{b}T_{b}
Swap sides so that all variable terms are on the left hand side.
R_{a}I_{g}=R_{a}T_{b}+R_{b}T_{b}
The equation is in standard form.
\frac{R_{a}I_{g}}{R_{a}}=\frac{T_{b}\left(R_{a}+R_{b}\right)}{R_{a}}
Divide both sides by R_{a}.
I_{g}=\frac{T_{b}\left(R_{a}+R_{b}\right)}{R_{a}}
Dividing by R_{a} undoes the multiplication by R_{a}.
I_{g}=\frac{T_{b}\left(R_{a}+R_{b}\right)}{R_{a}}\text{, }I_{g}\neq 0
Variable I_{g} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}