Solve for M
M=\frac{TH^{2}}{2}
H\neq 0\text{ and }T\neq 0
Solve for H (complex solution)
H=-T^{-\frac{1}{2}}\sqrt{2M}
H=T^{-\frac{1}{2}}\sqrt{2M}\text{, }T\neq 0\text{ and }M\neq 0
Solve for H
H=\sqrt{\frac{2M}{T}}
H=-\sqrt{\frac{2M}{T}}\text{, }\left(T<0\text{ and }M<0\right)\text{ or }\left(T>0\text{ and }M>0\right)
Share
Copied to clipboard
THH=2M
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by M.
TH^{2}=2M
Multiply H and H to get H^{2}.
2M=TH^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{2M}{2}=\frac{TH^{2}}{2}
Divide both sides by 2.
M=\frac{TH^{2}}{2}
Dividing by 2 undoes the multiplication by 2.
M=\frac{TH^{2}}{2}\text{, }M\neq 0
Variable M cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}