Solve for T
T=\frac{x}{2y}
x\neq 0\text{ and }y\neq 0
Solve for x
x=2Ty
y\neq 0\text{ and }T\neq 0
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { T } { x } + \frac { 1 } { 2 y } = \frac { 1 } { y }
Share
Copied to clipboard
2yT+x=2x
Multiply both sides of the equation by 2xy, the least common multiple of x,2y,y.
2yT=2x-x
Subtract x from both sides.
2yT=x
Combine 2x and -x to get x.
\frac{2yT}{2y}=\frac{x}{2y}
Divide both sides by 2y.
T=\frac{x}{2y}
Dividing by 2y undoes the multiplication by 2y.
2yT+x=2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2xy, the least common multiple of x,2y,y.
2yT+x-2x=0
Subtract 2x from both sides.
2yT-x=0
Combine x and -2x to get -x.
-x=-2yT
Subtract 2yT from both sides. Anything subtracted from zero gives its negation.
-x=-2Ty
The equation is in standard form.
\frac{-x}{-1}=-\frac{2Ty}{-1}
Divide both sides by -1.
x=-\frac{2Ty}{-1}
Dividing by -1 undoes the multiplication by -1.
x=2Ty
Divide -2yT by -1.
x=2Ty\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}