Evaluate
\frac{6V}{5}
Differentiate w.r.t. V
\frac{6}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\frac{S}{\frac{S}{3V}+\frac{\frac{S}{3}}{2V}+\frac{\frac{S}{3}}{V}}
Express \frac{\frac{S}{3}}{V} as a single fraction.
\frac{S}{\frac{S}{3V}+\frac{S}{3\times 2V}+\frac{\frac{S}{3}}{V}}
Express \frac{\frac{S}{3}}{2V} as a single fraction.
\frac{S}{\frac{S}{3V}+\frac{S}{6V}+\frac{\frac{S}{3}}{V}}
Multiply 3 and 2 to get 6.
\frac{S}{\frac{S}{3V}+\frac{S}{6V}+\frac{S}{3V}}
Express \frac{\frac{S}{3}}{V} as a single fraction.
\frac{S}{2\times \frac{S}{3V}+\frac{S}{6V}}
Combine \frac{S}{3V} and \frac{S}{3V} to get 2\times \frac{S}{3V}.
\frac{S}{\frac{2S}{3V}+\frac{S}{6V}}
Express 2\times \frac{S}{3V} as a single fraction.
\frac{S}{\frac{2\times 2S}{6V}+\frac{S}{6V}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3V and 6V is 6V. Multiply \frac{2S}{3V} times \frac{2}{2}.
\frac{S}{\frac{2\times 2S+S}{6V}}
Since \frac{2\times 2S}{6V} and \frac{S}{6V} have the same denominator, add them by adding their numerators.
\frac{S}{\frac{4S+S}{6V}}
Do the multiplications in 2\times 2S+S.
\frac{S}{\frac{5S}{6V}}
Combine like terms in 4S+S.
\frac{S\times 6V}{5S}
Divide S by \frac{5S}{6V} by multiplying S by the reciprocal of \frac{5S}{6V}.
\frac{6V}{5}
Cancel out S in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}