Solve for P_1
\left\{\begin{matrix}P_{1}=\left(\frac{V_{1}}{V_{2}}\right)^{2}P_{2}\text{, }&V_{1}\neq 0\text{ and }P_{2}\neq 0\text{ and }V_{2}\neq 0\\P_{1}\neq 0\text{, }&V_{2}=0\text{ and }P_{2}=0\text{ and }V_{1}\neq 0\end{matrix}\right.
Solve for P_2
P_{2}=\left(\frac{V_{2}}{V_{1}}\right)^{2}P_{1}
P_{1}\neq 0\text{ and }V_{1}\neq 0
Share
Copied to clipboard
P_{2}=P_{1}\times \left(\frac{V_{2}}{V_{1}}\right)^{2}
Variable P_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by P_{1}.
P_{2}=P_{1}\times \frac{V_{2}^{2}}{V_{1}^{2}}
To raise \frac{V_{2}}{V_{1}} to a power, raise both numerator and denominator to the power and then divide.
P_{2}=\frac{P_{1}V_{2}^{2}}{V_{1}^{2}}
Express P_{1}\times \frac{V_{2}^{2}}{V_{1}^{2}} as a single fraction.
\frac{P_{1}V_{2}^{2}}{V_{1}^{2}}=P_{2}
Swap sides so that all variable terms are on the left hand side.
P_{1}V_{2}^{2}=P_{2}V_{1}^{2}
Multiply both sides of the equation by V_{1}^{2}.
V_{2}^{2}P_{1}=P_{2}V_{1}^{2}
The equation is in standard form.
\frac{V_{2}^{2}P_{1}}{V_{2}^{2}}=\frac{P_{2}V_{1}^{2}}{V_{2}^{2}}
Divide both sides by V_{2}^{2}.
P_{1}=\frac{P_{2}V_{1}^{2}}{V_{2}^{2}}
Dividing by V_{2}^{2} undoes the multiplication by V_{2}^{2}.
P_{1}=\frac{P_{2}V_{1}^{2}}{V_{2}^{2}}\text{, }P_{1}\neq 0
Variable P_{1} cannot be equal to 0.
\frac{1}{P_{1}}P_{2}=\frac{V_{2}^{2}}{V_{1}^{2}}
The equation is in standard form.
\frac{\frac{1}{P_{1}}P_{2}P_{1}}{1}=\frac{V_{2}^{2}}{V_{1}^{2}\times \frac{1}{P_{1}}}
Divide both sides by P_{1}^{-1}.
P_{2}=\frac{V_{2}^{2}}{V_{1}^{2}\times \frac{1}{P_{1}}}
Dividing by P_{1}^{-1} undoes the multiplication by P_{1}^{-1}.
P_{2}=\frac{P_{1}V_{2}^{2}}{V_{1}^{2}}
Divide \frac{V_{2}^{2}}{V_{1}^{2}} by P_{1}^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}