Solve for P
P=13p-56
p\neq 4
Solve for p
p=\frac{P+56}{13}
P\neq -4
Share
Copied to clipboard
P+4=13\left(p-4\right)
Multiply both sides of the equation by p-4.
P+4=13p-52
Use the distributive property to multiply 13 by p-4.
P=13p-52-4
Subtract 4 from both sides.
P=13p-56
Subtract 4 from -52 to get -56.
P+4=13\left(p-4\right)
Variable p cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by p-4.
P+4=13p-52
Use the distributive property to multiply 13 by p-4.
13p-52=P+4
Swap sides so that all variable terms are on the left hand side.
13p=P+4+52
Add 52 to both sides.
13p=P+56
Add 4 and 52 to get 56.
\frac{13p}{13}=\frac{P+56}{13}
Divide both sides by 13.
p=\frac{P+56}{13}
Dividing by 13 undoes the multiplication by 13.
p=\frac{P+56}{13}\text{, }p\neq 4
Variable p cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}