Solve for P
P=\frac{2\left(3p+Q-6\right)}{Q}
p\neq 2\text{ and }Q\neq 0
Solve for Q
Q=-\frac{6\left(p-2\right)}{2-P}
P\neq 2\text{ and }p\neq 2
Share
Copied to clipboard
\left(p-2\right)\left(P+4\right)=\left(P-2\right)\left(p-2\right)+\left(P-2\right)Q
Variable P cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(P-2\right)\left(p-2\right), the least common multiple of P-2,p-2.
pP+4p-2P-8=\left(P-2\right)\left(p-2\right)+\left(P-2\right)Q
Use the distributive property to multiply p-2 by P+4.
pP+4p-2P-8=Pp-2P-2p+4+\left(P-2\right)Q
Use the distributive property to multiply P-2 by p-2.
pP+4p-2P-8=Pp-2P-2p+4+PQ-2Q
Use the distributive property to multiply P-2 by Q.
pP+4p-2P-8-Pp=-2P-2p+4+PQ-2Q
Subtract Pp from both sides.
4p-2P-8=-2P-2p+4+PQ-2Q
Combine pP and -Pp to get 0.
4p-2P-8+2P=-2p+4+PQ-2Q
Add 2P to both sides.
4p-8=-2p+4+PQ-2Q
Combine -2P and 2P to get 0.
-2p+4+PQ-2Q=4p-8
Swap sides so that all variable terms are on the left hand side.
4+PQ-2Q=4p-8+2p
Add 2p to both sides.
4+PQ-2Q=6p-8
Combine 4p and 2p to get 6p.
PQ-2Q=6p-8-4
Subtract 4 from both sides.
PQ-2Q=6p-12
Subtract 4 from -8 to get -12.
PQ=6p-12+2Q
Add 2Q to both sides.
QP=6p+2Q-12
The equation is in standard form.
\frac{QP}{Q}=\frac{6p+2Q-12}{Q}
Divide both sides by Q.
P=\frac{6p+2Q-12}{Q}
Dividing by Q undoes the multiplication by Q.
P=\frac{2\left(3p+Q-6\right)}{Q}
Divide -12+6p+2Q by Q.
P=\frac{2\left(3p+Q-6\right)}{Q}\text{, }P\neq 2
Variable P cannot be equal to 2.
\left(p-2\right)\left(P+4\right)=\left(P-2\right)\left(p-2\right)+\left(P-2\right)Q
Multiply both sides of the equation by \left(P-2\right)\left(p-2\right), the least common multiple of P-2,p-2.
pP+4p-2P-8=\left(P-2\right)\left(p-2\right)+\left(P-2\right)Q
Use the distributive property to multiply p-2 by P+4.
pP+4p-2P-8=Pp-2P-2p+4+\left(P-2\right)Q
Use the distributive property to multiply P-2 by p-2.
pP+4p-2P-8=Pp-2P-2p+4+PQ-2Q
Use the distributive property to multiply P-2 by Q.
Pp-2P-2p+4+PQ-2Q=pP+4p-2P-8
Swap sides so that all variable terms are on the left hand side.
-2P-2p+4+PQ-2Q=pP+4p-2P-8-Pp
Subtract Pp from both sides.
-2P-2p+4+PQ-2Q=4p-2P-8
Combine pP and -Pp to get 0.
-2p+4+PQ-2Q=4p-2P-8+2P
Add 2P to both sides.
-2p+4+PQ-2Q=4p-8
Combine -2P and 2P to get 0.
4+PQ-2Q=4p-8+2p
Add 2p to both sides.
4+PQ-2Q=6p-8
Combine 4p and 2p to get 6p.
PQ-2Q=6p-8-4
Subtract 4 from both sides.
PQ-2Q=6p-12
Subtract 4 from -8 to get -12.
\left(P-2\right)Q=6p-12
Combine all terms containing Q.
\frac{\left(P-2\right)Q}{P-2}=\frac{6p-12}{P-2}
Divide both sides by P-2.
Q=\frac{6p-12}{P-2}
Dividing by P-2 undoes the multiplication by P-2.
Q=\frac{6\left(p-2\right)}{P-2}
Divide -12+6p by P-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}