Solve for N (complex solution)
N=\frac{5\left(\sqrt{n}+1\right)}{3}
Solve for N
N=\frac{5\left(\sqrt{n}+1\right)}{3}
n\geq 0
Solve for n (complex solution)
n=\frac{\left(5-3N\right)^{2}}{25}
N=\frac{5}{3}\text{ or }arg(-\frac{3N}{5}+1)\geq \pi
Solve for n
n=\frac{\left(5-3N\right)^{2}}{25}
-\left(-\frac{3N}{5}+1\right)\geq 0
Share
Copied to clipboard
\frac{1}{\sqrt{n}+1}N=\frac{5}{3}
The equation is in standard form.
\frac{\frac{1}{\sqrt{n}+1}N\left(\sqrt{n}+1\right)}{1}=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Divide both sides by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Dividing by \left(\sqrt{n}+1\right)^{-1} undoes the multiplication by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{5\sqrt{n}+5}{3}
Divide \frac{5}{3} by \left(\sqrt{n}+1\right)^{-1}.
\frac{1}{\sqrt{n}+1}N=\frac{5}{3}
The equation is in standard form.
\frac{\frac{1}{\sqrt{n}+1}N\left(\sqrt{n}+1\right)}{1}=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Divide both sides by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Dividing by \left(\sqrt{n}+1\right)^{-1} undoes the multiplication by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{5\sqrt{n}+5}{3}
Divide \frac{5}{3} by \left(\sqrt{n}+1\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}