Skip to main content
Solve for N (complex solution)
Tick mark Image
Solve for N
Tick mark Image
Solve for n (complex solution)
Tick mark Image
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\sqrt{n}+1}N=\frac{5}{3}
The equation is in standard form.
\frac{\frac{1}{\sqrt{n}+1}N\left(\sqrt{n}+1\right)}{1}=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Divide both sides by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Dividing by \left(\sqrt{n}+1\right)^{-1} undoes the multiplication by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{5\sqrt{n}+5}{3}
Divide \frac{5}{3} by \left(\sqrt{n}+1\right)^{-1}.
\frac{1}{\sqrt{n}+1}N=\frac{5}{3}
The equation is in standard form.
\frac{\frac{1}{\sqrt{n}+1}N\left(\sqrt{n}+1\right)}{1}=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Divide both sides by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{\frac{5}{3}\left(\sqrt{n}+1\right)}{1}
Dividing by \left(\sqrt{n}+1\right)^{-1} undoes the multiplication by \left(\sqrt{n}+1\right)^{-1}.
N=\frac{5\sqrt{n}+5}{3}
Divide \frac{5}{3} by \left(\sqrt{n}+1\right)^{-1}.