Solve for A
\left\{\begin{matrix}A=\frac{5B}{3D}\text{, }&B\neq 0\text{ and }D\neq 0\text{ and }M\neq 0\\A\neq 0\text{, }&D=0\text{ and }B=0\text{ and }M\neq 0\end{matrix}\right.
Solve for B
B=\frac{3AD}{5}
A\neq 0\text{ and }M\neq 0
Share
Copied to clipboard
5MB=\frac{3}{5}D\times 5AM
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5AM, the least common multiple of AM,5.
5MB=3DAM
Multiply \frac{3}{5} and 5 to get 3.
3DAM=5MB
Swap sides so that all variable terms are on the left hand side.
3DMA=5BM
The equation is in standard form.
\frac{3DMA}{3DM}=\frac{5BM}{3DM}
Divide both sides by 3DM.
A=\frac{5BM}{3DM}
Dividing by 3DM undoes the multiplication by 3DM.
A=\frac{5B}{3D}
Divide 5MB by 3DM.
A=\frac{5B}{3D}\text{, }A\neq 0
Variable A cannot be equal to 0.
5MB=\frac{3}{5}D\times 5AM
Multiply both sides of the equation by 5AM, the least common multiple of AM,5.
5MB=3DAM
Multiply \frac{3}{5} and 5 to get 3.
5MB=3ADM
The equation is in standard form.
\frac{5MB}{5M}=\frac{3ADM}{5M}
Divide both sides by 5M.
B=\frac{3ADM}{5M}
Dividing by 5M undoes the multiplication by 5M.
B=\frac{3AD}{5}
Divide 3DAM by 5M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}