Evaluate
M+2
Expand
M+2
Share
Copied to clipboard
\frac{MM}{M-2}-2\times \left(\frac{M-2}{2}\right)^{-1}
Express \frac{M}{M-2}M as a single fraction.
\frac{MM}{M-2}-2\times \frac{\left(M-2\right)^{-1}}{2^{-1}}
To raise \frac{M-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{MM}{M-2}-\frac{2\left(M-2\right)^{-1}}{2^{-1}}
Express 2\times \frac{\left(M-2\right)^{-1}}{2^{-1}} as a single fraction.
\frac{MM}{M-2}-2^{2}\times \frac{1}{M-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{M^{2}}{M-2}-2^{2}\times \frac{1}{M-2}
Multiply M and M to get M^{2}.
\frac{M^{2}}{M-2}-4\times \frac{1}{M-2}
Calculate 2 to the power of 2 and get 4.
\frac{M^{2}}{M-2}-\frac{4}{M-2}
Express 4\times \frac{1}{M-2} as a single fraction.
\frac{M^{2}-4}{M-2}
Since \frac{M^{2}}{M-2} and \frac{4}{M-2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(M-2\right)\left(M+2\right)}{M-2}
Factor the expressions that are not already factored in \frac{M^{2}-4}{M-2}.
M+2
Cancel out M-2 in both numerator and denominator.
\frac{MM}{M-2}-2\times \left(\frac{M-2}{2}\right)^{-1}
Express \frac{M}{M-2}M as a single fraction.
\frac{MM}{M-2}-2\times \frac{\left(M-2\right)^{-1}}{2^{-1}}
To raise \frac{M-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{MM}{M-2}-\frac{2\left(M-2\right)^{-1}}{2^{-1}}
Express 2\times \frac{\left(M-2\right)^{-1}}{2^{-1}} as a single fraction.
\frac{MM}{M-2}-2^{2}\times \frac{1}{M-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{M^{2}}{M-2}-2^{2}\times \frac{1}{M-2}
Multiply M and M to get M^{2}.
\frac{M^{2}}{M-2}-4\times \frac{1}{M-2}
Calculate 2 to the power of 2 and get 4.
\frac{M^{2}}{M-2}-\frac{4}{M-2}
Express 4\times \frac{1}{M-2} as a single fraction.
\frac{M^{2}-4}{M-2}
Since \frac{M^{2}}{M-2} and \frac{4}{M-2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(M-2\right)\left(M+2\right)}{M-2}
Factor the expressions that are not already factored in \frac{M^{2}-4}{M-2}.
M+2
Cancel out M-2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}