Solve for H_1
H_{1}=\frac{H_{2}W_{1}}{W_{2}}
W_{1}\neq 0\text{ and }W_{2}\neq 0
Solve for H_2
H_{2}=\frac{H_{1}W_{2}}{W_{1}}
W_{1}\neq 0\text{ and }W_{2}\neq 0
Share
Copied to clipboard
W_{2}H_{1}=W_{1}H_{2}
Multiply both sides of the equation by W_{1}W_{2}, the least common multiple of W_{1},W_{2}.
W_{2}H_{1}=H_{2}W_{1}
The equation is in standard form.
\frac{W_{2}H_{1}}{W_{2}}=\frac{H_{2}W_{1}}{W_{2}}
Divide both sides by W_{2}.
H_{1}=\frac{H_{2}W_{1}}{W_{2}}
Dividing by W_{2} undoes the multiplication by W_{2}.
W_{2}H_{1}=W_{1}H_{2}
Multiply both sides of the equation by W_{1}W_{2}, the least common multiple of W_{1},W_{2}.
W_{1}H_{2}=W_{2}H_{1}
Swap sides so that all variable terms are on the left hand side.
W_{1}H_{2}=H_{1}W_{2}
The equation is in standard form.
\frac{W_{1}H_{2}}{W_{1}}=\frac{H_{1}W_{2}}{W_{1}}
Divide both sides by W_{1}.
H_{2}=\frac{H_{1}W_{2}}{W_{1}}
Dividing by W_{1} undoes the multiplication by W_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}