Solve for H
H=\frac{2\left(k+3\right)}{k-1}
k\neq -3\text{ and }k\neq 1
Solve for k
k=\frac{H+6}{H-2}
H\neq 0\text{ and }H\neq 2
Share
Copied to clipboard
H\left(k-1\right)=2\left(k+3\right)
Multiply both sides of the equation by k+3.
Hk-H=2\left(k+3\right)
Use the distributive property to multiply H by k-1.
Hk-H=2k+6
Use the distributive property to multiply 2 by k+3.
\left(k-1\right)H=2k+6
Combine all terms containing H.
\frac{\left(k-1\right)H}{k-1}=\frac{2k+6}{k-1}
Divide both sides by k-1.
H=\frac{2k+6}{k-1}
Dividing by k-1 undoes the multiplication by k-1.
H=\frac{2\left(k+3\right)}{k-1}
Divide 6+2k by k-1.
H\left(k-1\right)=2\left(k+3\right)
Variable k cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by k+3.
Hk-H=2\left(k+3\right)
Use the distributive property to multiply H by k-1.
Hk-H=2k+6
Use the distributive property to multiply 2 by k+3.
Hk-H-2k=6
Subtract 2k from both sides.
Hk-2k=6+H
Add H to both sides.
\left(H-2\right)k=6+H
Combine all terms containing k.
\left(H-2\right)k=H+6
The equation is in standard form.
\frac{\left(H-2\right)k}{H-2}=\frac{H+6}{H-2}
Divide both sides by H-2.
k=\frac{H+6}{H-2}
Dividing by H-2 undoes the multiplication by H-2.
k=\frac{H+6}{H-2}\text{, }k\neq -3
Variable k cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}