\frac { G _ { 1 } } { T _ { 1 } } = 32 \%
Solve for G_1
G_{1}=\frac{8T_{1}}{25}
T_{1}\neq 0
Solve for T_1
T_{1}=\frac{25G_{1}}{8}
G_{1}\neq 0
Share
Copied to clipboard
100G_{1}=T_{1}\times 32
Multiply both sides of the equation by 100T_{1}, the least common multiple of T_{1},100.
100G_{1}=32T_{1}
The equation is in standard form.
\frac{100G_{1}}{100}=\frac{32T_{1}}{100}
Divide both sides by 100.
G_{1}=\frac{32T_{1}}{100}
Dividing by 100 undoes the multiplication by 100.
G_{1}=\frac{8T_{1}}{25}
Divide 32T_{1} by 100.
100G_{1}=T_{1}\times 32
Variable T_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100T_{1}, the least common multiple of T_{1},100.
T_{1}\times 32=100G_{1}
Swap sides so that all variable terms are on the left hand side.
32T_{1}=100G_{1}
The equation is in standard form.
\frac{32T_{1}}{32}=\frac{100G_{1}}{32}
Divide both sides by 32.
T_{1}=\frac{100G_{1}}{32}
Dividing by 32 undoes the multiplication by 32.
T_{1}=\frac{25G_{1}}{8}
Divide 100G_{1} by 32.
T_{1}=\frac{25G_{1}}{8}\text{, }T_{1}\neq 0
Variable T_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}