Solve for C_n (complex solution)
C_{n}\neq 0
\left(R=\frac{-Hh+\sqrt{hH^{2}}}{h-1}\text{ and }H\neq 0\text{ and }h\neq 1\right)\text{ or }\left(R=-\frac{Hh+\sqrt{hH^{2}}}{h-1}\text{ and }h\neq 0\text{ and }H\neq 0\text{ and }h\neq 1\right)\text{ or }\left(R=-\frac{H}{2}\text{ and }h=1\text{ and }H\neq 0\right)\text{ or }\left(h=1\text{ and }H=0\text{ and }R\neq 0\right)
Solve for C_n
C_{n}\neq 0
\left(R=0\text{ and }h=0\text{ and }H\neq 0\right)\text{ or }\left(R\neq 0\text{ and }h=1\text{ and }H=0\right)\text{ or }\left(R=-\frac{H}{2}\text{ and }H\neq 0\text{ and }h=1\right)\text{ or }\left(R=\frac{-Hh+\sqrt{h}H}{h-1}\text{ and }H\neq 0\text{ and }h\neq 1\text{ and }h>0\right)\text{ or }\left(R=-\frac{Hh+\sqrt{h}H}{h-1}\text{ and }H\neq 0\text{ and }h\neq 1\text{ and }h>0\right)
Solve for H (complex solution)
\left\{\begin{matrix}H=-R-h^{-\frac{1}{2}}R\text{; }H=h^{-\frac{1}{2}}R-R\text{, }&R\neq 0\text{ and }h\neq 0\text{ and }C_{n}\neq 0\\H\neq 0\text{, }&h=0\text{ and }R=0\text{ and }C_{n}\neq 0\end{matrix}\right.
Solve for H
\left\{\begin{matrix}H=-R+\frac{R}{\sqrt{h}}\text{; }H=-R-\frac{R}{\sqrt{h}}\text{, }&R\neq 0\text{ and }h>0\text{ and }C_{n}\neq 0\\H\neq 0\text{, }&h=0\text{ and }R=0\text{ and }C_{n}\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(H+R\right)^{2}C_{n}h=C_{n}R^{2}
Variable C_{n} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by C_{n}\left(H+R\right)^{2}, the least common multiple of C_{n},\left(R+H\right)^{2}.
\left(H^{2}+2HR+R^{2}\right)C_{n}h=C_{n}R^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(H+R\right)^{2}.
\left(H^{2}C_{n}+2HRC_{n}+R^{2}C_{n}\right)h=C_{n}R^{2}
Use the distributive property to multiply H^{2}+2HR+R^{2} by C_{n}.
H^{2}C_{n}h+2HRC_{n}h+R^{2}C_{n}h=C_{n}R^{2}
Use the distributive property to multiply H^{2}C_{n}+2HRC_{n}+R^{2}C_{n} by h.
H^{2}C_{n}h+2HRC_{n}h+R^{2}C_{n}h-C_{n}R^{2}=0
Subtract C_{n}R^{2} from both sides.
2C_{n}HRh-C_{n}R^{2}+C_{n}hH^{2}+C_{n}hR^{2}=0
Reorder the terms.
\left(2HRh-R^{2}+hH^{2}+hR^{2}\right)C_{n}=0
Combine all terms containing C_{n}.
C_{n}=0
Divide 0 by hR^{2}+2hRH+hH^{2}-R^{2}.
C_{n}\in \emptyset
Variable C_{n} cannot be equal to 0.
\left(H+R\right)^{2}C_{n}h=C_{n}R^{2}
Variable C_{n} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by C_{n}\left(H+R\right)^{2}, the least common multiple of C_{n},\left(R+H\right)^{2}.
\left(H^{2}+2HR+R^{2}\right)C_{n}h=C_{n}R^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(H+R\right)^{2}.
\left(H^{2}C_{n}+2HRC_{n}+R^{2}C_{n}\right)h=C_{n}R^{2}
Use the distributive property to multiply H^{2}+2HR+R^{2} by C_{n}.
H^{2}C_{n}h+2HRC_{n}h+R^{2}C_{n}h=C_{n}R^{2}
Use the distributive property to multiply H^{2}C_{n}+2HRC_{n}+R^{2}C_{n} by h.
H^{2}C_{n}h+2HRC_{n}h+R^{2}C_{n}h-C_{n}R^{2}=0
Subtract C_{n}R^{2} from both sides.
2C_{n}HRh-C_{n}R^{2}+C_{n}hH^{2}+C_{n}hR^{2}=0
Reorder the terms.
\left(2HRh-R^{2}+hH^{2}+hR^{2}\right)C_{n}=0
Combine all terms containing C_{n}.
C_{n}=0
Divide 0 by hR^{2}+2hRH+hH^{2}-R^{2}.
C_{n}\in \emptyset
Variable C_{n} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}