Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{combination(2,5)combination(2,3)A_{2}^{2}combination(3,5)A_{3}^{3}+A_{3}^{3}combination(2,3)combination(2,5)}{combination(3,5)A_{3}^{3}+\frac{combination(2,5)combination(2,3)A_{3}^{3}A_{2}^{2}}{A_{2}^{2}}}
Cancel out A_{2}^{2} in both numerator and denominator.
\frac{combination(2,5)combination(2,3)A_{2}^{2}combination(3,5)A_{3}^{3}+A_{3}^{3}combination(2,3)combination(2,5)}{combination(3,5)A_{3}^{3}+A_{3}^{3}combination(2,3)combination(2,5)}
Cancel out A_{2}^{2} in both numerator and denominator.
\frac{-\left(A_{3}^{3}combination(2,3)combination(2,5)+A_{3}^{3}combination(3,5)\right)}{A_{3}^{3}combination(2,3)combination(2,5)+A_{3}^{3}combination(3,5)}
Extract the negative sign in combination(2,5)combination(2,3)A_{2}^{2}combination(3,5)A_{3}^{3}+A_{3}^{3}combination(2,3)combination(2,5).
-1
Cancel out A_{3}^{3}combination(2,3)combination(2,5)+A_{3}^{3}combination(3,5) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}