Solve for B
B=\frac{5\left(\sqrt{3}+1\right)}{C}
C\neq 0
Solve for C
C=\frac{5\left(\sqrt{3}+1\right)}{B}
B\neq 0
Share
Copied to clipboard
\frac{\left(BC+10\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=BC
Rationalize the denominator of \frac{BC+10}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(BC+10\right)\sqrt{3}}{3}=BC
The square of \sqrt{3} is 3.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}=BC
Use the distributive property to multiply BC+10 by \sqrt{3}.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}-BC=0
Subtract BC from both sides.
BC\sqrt{3}+10\sqrt{3}-3BC=0
Multiply both sides of the equation by 3.
\sqrt{3}BC-3BC+10\sqrt{3}=0
Reorder the terms.
\sqrt{3}BC-3BC=-10\sqrt{3}
Subtract 10\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}C-3C\right)B=-10\sqrt{3}
Combine all terms containing B.
\frac{\left(\sqrt{3}C-3C\right)B}{\sqrt{3}C-3C}=-\frac{10\sqrt{3}}{\sqrt{3}C-3C}
Divide both sides by \sqrt{3}C-3C.
B=-\frac{10\sqrt{3}}{\sqrt{3}C-3C}
Dividing by \sqrt{3}C-3C undoes the multiplication by \sqrt{3}C-3C.
B=\frac{5\left(\sqrt{3}+1\right)}{C}
Divide -10\sqrt{3} by \sqrt{3}C-3C.
\frac{\left(BC+10\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=BC
Rationalize the denominator of \frac{BC+10}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(BC+10\right)\sqrt{3}}{3}=BC
The square of \sqrt{3} is 3.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}=BC
Use the distributive property to multiply BC+10 by \sqrt{3}.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}-BC=0
Subtract BC from both sides.
BC\sqrt{3}+10\sqrt{3}-3BC=0
Multiply both sides of the equation by 3.
\sqrt{3}BC-3BC+10\sqrt{3}=0
Reorder the terms.
\sqrt{3}BC-3BC=-10\sqrt{3}
Subtract 10\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}B-3B\right)C=-10\sqrt{3}
Combine all terms containing C.
\frac{\left(\sqrt{3}B-3B\right)C}{\sqrt{3}B-3B}=-\frac{10\sqrt{3}}{\sqrt{3}B-3B}
Divide both sides by \sqrt{3}B-3B.
C=-\frac{10\sqrt{3}}{\sqrt{3}B-3B}
Dividing by \sqrt{3}B-3B undoes the multiplication by \sqrt{3}B-3B.
C=\frac{5\left(\sqrt{3}+1\right)}{B}
Divide -10\sqrt{3} by \sqrt{3}B-3B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}