Skip to main content
Solve for B
Tick mark Image
Solve for C
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(BC+10\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=BC
Rationalize the denominator of \frac{BC+10}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(BC+10\right)\sqrt{3}}{3}=BC
The square of \sqrt{3} is 3.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}=BC
Use the distributive property to multiply BC+10 by \sqrt{3}.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}-BC=0
Subtract BC from both sides.
BC\sqrt{3}+10\sqrt{3}-3BC=0
Multiply both sides of the equation by 3.
\sqrt{3}BC-3BC+10\sqrt{3}=0
Reorder the terms.
\sqrt{3}BC-3BC=-10\sqrt{3}
Subtract 10\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}C-3C\right)B=-10\sqrt{3}
Combine all terms containing B.
\frac{\left(\sqrt{3}C-3C\right)B}{\sqrt{3}C-3C}=-\frac{10\sqrt{3}}{\sqrt{3}C-3C}
Divide both sides by \sqrt{3}C-3C.
B=-\frac{10\sqrt{3}}{\sqrt{3}C-3C}
Dividing by \sqrt{3}C-3C undoes the multiplication by \sqrt{3}C-3C.
B=\frac{5\left(\sqrt{3}+1\right)}{C}
Divide -10\sqrt{3} by \sqrt{3}C-3C.
\frac{\left(BC+10\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=BC
Rationalize the denominator of \frac{BC+10}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(BC+10\right)\sqrt{3}}{3}=BC
The square of \sqrt{3} is 3.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}=BC
Use the distributive property to multiply BC+10 by \sqrt{3}.
\frac{BC\sqrt{3}+10\sqrt{3}}{3}-BC=0
Subtract BC from both sides.
BC\sqrt{3}+10\sqrt{3}-3BC=0
Multiply both sides of the equation by 3.
\sqrt{3}BC-3BC+10\sqrt{3}=0
Reorder the terms.
\sqrt{3}BC-3BC=-10\sqrt{3}
Subtract 10\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}B-3B\right)C=-10\sqrt{3}
Combine all terms containing C.
\frac{\left(\sqrt{3}B-3B\right)C}{\sqrt{3}B-3B}=-\frac{10\sqrt{3}}{\sqrt{3}B-3B}
Divide both sides by \sqrt{3}B-3B.
C=-\frac{10\sqrt{3}}{\sqrt{3}B-3B}
Dividing by \sqrt{3}B-3B undoes the multiplication by \sqrt{3}B-3B.
C=\frac{5\left(\sqrt{3}+1\right)}{B}
Divide -10\sqrt{3} by \sqrt{3}B-3B.