Solve for A
\left\{\begin{matrix}A=0\text{, }&D\neq 0\text{ and }B\neq 0\text{ and }E\neq 0\\A\in \mathrm{R}\text{, }&B=E\text{ and }D\neq 0\text{ and }E\neq 0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=E\text{, }&E\neq 0\text{ and }D\neq 0\\B\neq 0\text{, }&E\neq 0\text{ and }D\neq 0\text{ and }A=0\end{matrix}\right.
Share
Copied to clipboard
EAD=BDA
Multiply both sides of the equation by BDE, the least common multiple of DB,E.
EAD-BDA=0
Subtract BDA from both sides.
-ABD+ADE=0
Reorder the terms.
\left(-BD+DE\right)A=0
Combine all terms containing A.
\left(DE-BD\right)A=0
The equation is in standard form.
A=0
Divide 0 by -BD+DE.
EAD=BDA
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by BDE, the least common multiple of DB,E.
BDA=EAD
Swap sides so that all variable terms are on the left hand side.
ADB=ADE
The equation is in standard form.
\frac{ADB}{AD}=\frac{ADE}{AD}
Divide both sides by AD.
B=\frac{ADE}{AD}
Dividing by AD undoes the multiplication by AD.
B=E
Divide EAD by AD.
B=E\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}