Solve for A
A=\frac{2Br}{5}
P\neq 0\text{ and }B\neq 0
Solve for B
\left\{\begin{matrix}B=\frac{5A}{2r}\text{, }&A\neq 0\text{ and }r\neq 0\text{ and }P\neq 0\\B\neq 0\text{, }&P\neq 0\text{ and }r=0\text{ and }A=0\end{matrix}\right.
Share
Copied to clipboard
5AP=r\times \frac{2}{5}\times 5BP
Multiply both sides of the equation by 5BP, the least common multiple of PB,5.
5AP=r\times 2BP
Multiply \frac{2}{5} and 5 to get 2.
5PA=2BPr
The equation is in standard form.
\frac{5PA}{5P}=\frac{2BPr}{5P}
Divide both sides by 5P.
A=\frac{2BPr}{5P}
Dividing by 5P undoes the multiplication by 5P.
A=\frac{2Br}{5}
Divide 2rBP by 5P.
5AP=r\times \frac{2}{5}\times 5BP
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5BP, the least common multiple of PB,5.
5AP=r\times 2BP
Multiply \frac{2}{5} and 5 to get 2.
r\times 2BP=5AP
Swap sides so that all variable terms are on the left hand side.
2PrB=5AP
The equation is in standard form.
\frac{2PrB}{2Pr}=\frac{5AP}{2Pr}
Divide both sides by 2rP.
B=\frac{5AP}{2Pr}
Dividing by 2rP undoes the multiplication by 2rP.
B=\frac{5A}{2r}
Divide 5AP by 2rP.
B=\frac{5A}{2r}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}